研究生: |
費文遠 Fei, Wen-Yuan |
---|---|
論文名稱: |
晶圓級深紫外光曝光全蝕刻二維材料連續膜之局域型背閘極陣列元件製程 Fabrication of Dual-Gate 2D Material Transistors via Wafer-Scale Deep Ultraviolet Exposure and Full-Etching Process |
指導教授: |
邱博文
Chiu, Po-Wen |
口試委員: |
沈昌宏
Shen, Chang-Hong 葉伯淳 Yeh, Po-Chun |
學位類別: |
碩士 Master |
系所名稱: |
半導體研究學院 - 半導體研究學院 College of Semiconductor Research |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 116 |
中文關鍵詞: | 二維材料 、深紫外光曝光技術 、製程平台 、先進半導體 、反相器 、可調控臨界電壓 、鰭式半導體 、三維積體電路整合 |
外文關鍵詞: | 2D material, deep ultraviolet lithography, process flow platform, advanced semiconductor, inverter, tunable threshold voltage, FinFET, 3DIC |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二維材料作為新一代半導體材料,相較於傳統矽基晶片展現出顯著優
勢。例如,其晶格結構不含懸鍵,能有效抑制通道厚度縮減時的載子遷移
率退化。此外,在奈米尺度下,二維材料的閘極控制能力優於矽基鰭式場
效電晶體(FinFET),顯示其在“More Moore”技術發展路徑中的潛力。
另一方面,二維材料層間缺乏共價鍵結合,使得機械轉移與精確厚度
控制成為可能。此類材料可透過BEOL 低溫製程進行製造,對底層基板
的選擇性要求極低,因而適用於現有矽製程平台,促進異質整合,並推動
“More than Moore”技術的實現。
然而二維材料電晶體相較於傳統矽製程,在工業化的道路上仍有一些瓶
頸需克服,基於上述技術發展趨勢與研究目標,本論文旨在使二維材料電
晶體的製作方式逐步接近矽基晶片架構,並分為幾個主要階段:
矽基相容製程開發:採用深紫外光微影技術製作二維材料電晶體,縮小
元件尺寸,並開發上閘極結構,以初步展示此邏輯結構之特性能否投入後
續應用。
矽基電晶體匹配元件開發:開發晶圓級大規模二維材料雙閘極電晶體陣
列,透過雙閘極元件,在元件縮小尺度時提供更精確的閘極控制,提高開
關特性,並有效減少短通道效應。並進行三維垂直整合的初步驗證,以評
估其可行性與潛在應用價值。
與矽基元件整合:利用上述技術在矽基鰭式電晶體晶圓上進行垂直異質
整合,實現單晶片式三維邏輯積體電路。
Two-dimensional (2D) semiconductors offer promising potential for post-
Silicon logic devices. Their atomically thin structures and symmetric lattices
prevent mobility degradation from surface scattering and enhance electrostatic
gate control, making them suitable for nanoscale applications. These
attributes align with the “More Moore” paradigm, extending transistor
scalability.
The van der Waals (vdW) bonding in 2D materials facilitates precise
mechanical transfer processes, enabling thickness control and compatibility
with low-temperature back-end-of-line (BEOL) fabrication. Their minimal
substrate selectivity further supports heterogeneous integration with Si
CMOS technology, advancing the “More than Moore”vision. This thesis
encompasses a detailed examination of the aforementioned context and the
advancement of related technologies. It outlines three key stages that bring
2D materials closer to integration with Si-based semiconductor devices.
Si-Compatible Device: Conduct with wafer-level deep ultraviolet (DUV)
photolithography for the fabrication of two-dimensional materials, reduce
transistor dimensions, and develop dual-gate two-dimensional material transistors
to match the characteristics of silicon-based transistors.
Si-Compatible Process: Develop large-scale two-dimensional material
transistor arrays on 8-inch wafers and perform preliminary verification of
three-dimensional vertical integration.
Integration with Silicon-Based Devices: Utilize the aforementioned
technologies to achieve vertical heterogeneous integration on silicon fin
type transistor wafers, enabling the realization of monolithic three-dimensional logic integrated circuits.
參考文獻
[1] 陳之藩, “謝天,” 在春風裡, 1962.
[2] Y. Liu, X. Duan, H.-J. Shin, S. Park, Y. Huang, and X. Duan, “Promises and prospects
of two-dimensional transistors,” Nature, vol. 591, no. 7848, pp. 43–53, 2021.
[3] C. Liu, H. Chen, S. Wang, Q. Liu, Y.-G. Jiang, D. W. Zhang, M. Liu, and P. Zhou,
“Two-dimensional materials for next-generation computing technologies,” Nature
Nanotechnology, vol. 15, no. 7, pp. 545–557, 2020.
[4] T.-T. Wu, C.-H. Shen, J.-M. Shieh, W.-H. Huang, H.-H. Wang, F.-K. Hsueh, H.-C.
Chen, C.-C. Yang, T.-Y. Hsieh, B.-Y. Chen, Y.-S. Shiao, C.-S. Yang, G.-W. Huang,
K.-S. Li, T.-J. Hsueh, C.-F. Chen, W.-H. Chen, F.-L. Yang, M.-F. Chang, and W.-
K. Yeh, “Low-cost and tsv-free monolithic 3d-ic with heterogeneous integration of
logic, memory and sensor analogy circuitry for internet of things,” in 2015 IEEE
International Electron Devices Meeting (IEDM), pp. 25.4.1–25.4.4, 2015.
[5] K. S. Novoselov, A. K. Geim, S. V. Morozov, D.-e. Jiang, Y. Zhang, S. V. Dubonos,
I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon
films,” science, vol. 306, no. 5696, pp. 666–669, 2004.
[6] D. Pierucci, H. Henck, C. H. Naylor, H. Sediri, E. Lhuillier, A. Balan, J. E. Rault, Y. J.
Dappe, F. Bertran, P. L. Fèvre, et al., “Large area molybdenum disulphide-epitaxial
graphene vertical van der waals heterostructures,” Scientific reports, vol. 6, no. 1,
p. 26656, 2016.
[7] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang,
“Emerging photoluminescence in monolayer mos2,” Nano letters, vol. 10, no. 4,
pp. 1271–1275, 2010.
[8] Y. Liu, X. Duan, H.-J. Shin, S. Park, Y. Huang, and X. Duan, “Promises and prospects
of two-dimensional transistors,” Nature, vol. 591, no. 7848, pp. 43–53, 2021.
[9] C.-H. Lee, G.-H. Lee, A. M. Van Der Zande, W. Chen, Y. Li, M. Han, X. Cui,
G. Arefe, C. Nuckolls, T. F. Heinz, et al., “Atomically thin p–n junctions with van der
waals heterointerfaces,” Nature nanotechnology, vol. 9, no. 9, pp. 676–681, 2014.
[10] D. Akinwande, C. Huyghebaert, C.-H. Wang, M. I. Serna, S. Goossens, L.-J. Li, H.-
S. P. Wong, and F. H. Koppens, “Graphene and two-dimensional materials for silicon
technology,” Nature, vol. 573, no. 7775, pp. 507–518, 2019.
[11] S.-K. Su, E. Chen, T. Y. T. Hung, M.-Z. Li, G. Pitner, C.-C. Cheng, H. Wang, J. Cai,
H.-S. P. Wong, and I. P. Radu, “Perspective on low-dimensional channel materials for
extremely scaled cmos,” in 2022 IEEE Symposium on VLSI Technology and Circuits
(VLSI Technology and Circuits), pp. 403–404, 2022.
[12] K. P. O’Brien, C. Dorow, A. Penumatcha, K. Maxey, S. Lee, C. Naylor, A. Hsiao,
B. Holybee, C. Rogan, D. Adams, et al., “Advancing 2d monolayer cmos through
contact, channel and interface engineering,” in 2021 IEEE International Electron
Devices Meeting (IEDM), pp. 7–1, IEEE, 2021.
[13] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry
of two-dimensional layered transition metal dichalcogenide nanosheets,” Nature
chemistry, vol. 5, no. 4, pp. 263–275, 2013.
[14] M. Chhowalla, D. Jena, and H. Zhang, “Two-dimensional semiconductors for transistors,”
Nature Reviews Materials, vol. 1, no. 11, pp. 1–15, 2016.
[15] A. K. Geim and I. V. Grigorieva, “Van der waals heterostructures,” Nature, vol. 499,
no. 7459, pp. 419–425, 2013.
[16] I. Song, C. Park, and H. C. Choi, “Synthesis and properties of molybdenum disulphide:
from bulk to atomic layers,” Rsc Advances, vol. 5, no. 10, pp. 7495–7514,
2015.
[17] A. Ambrosi, Z. Sofer, and M. Pumera, “2h→ 1t phase transition and hydrogen evolution
activity of mos 2, mose 2, ws 2 and wse 2 strongly depends on the mx 2
composition,” Chemical Communications, vol. 51, no. 40, pp. 8450–8453, 2015.
[18] I. N. Yakovkin, “Dirac cones in graphene, interlayer interaction in layered materials,
and the band gap in mos2,” Crystals, vol. 6, no. 11, p. 143, 2016.
[19] A. Castellanos-Gomez, “Why all the fuss about 2d semiconductors?,” Nature Photonics,
vol. 10, no. 4, pp. 202–204, 2016.
[20] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer
mos2 transistors,” Nature nanotechnology, vol. 6, no. 3, pp. 147–150, 2011.
[21] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics
and optoelectronics of two-dimensional transition metal dichalcogenides,”
Nature nanotechnology, vol. 7, no. 11, pp. 699–712, 2012.
[22] V. Podzorov, M. Gershenson, C. Kloc, R. Zeis, and E. Bucher, “High-mobility fieldeffect
transistors based on transition metal dichalcogenides,” Applied Physics Letters,
vol. 84, no. 17, pp. 3301–3303, 2004.
[23] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer
mos2 transistors,” Nature nanotechnology, vol. 6, no. 3, pp. 147–150, 2011.
[24] Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu,
J. T.-W. Wang, C.-S. Chang, L.-J. Li, et al., “Synthesis of large-area mos2 atomic
layers with chemical vapor deposition,” arXiv preprint arXiv:1202.5458, 2012.
[25] H. Yu, M. Liao, W. Zhao, G. Liu, X. Zhou, Z. Wei, X. Xu, K. Liu, Z. Hu, K. Deng,
et al., “Wafer-scale growth and transfer of highly-oriented monolayer mos2 continuous
films,” ACS nano, vol. 11, no. 12, pp. 12001–12007, 2017.
[26] K. S. Kim, S. Seo, J. Kwon, D. Lee, C. Kim, J.-E. Ryu, J. Kim, J. M. Suh, H.-
G. Jung, Y. Jo, et al., “Growth-based monolithic 3d integration of single-crystal 2d
semiconductors,” Nature, vol. 636, no. 8043, pp. 615–621, 2024.
[27] K. Banerjee, S. J. Souri, P. Kapur, and K. C. Saraswat, “3-d ics: A novel chip design
for improving deep-submicrometer interconnect performance and systems-on-chip
integration,” Proceedings of the IEEE, vol. 89, no. 5, pp. 602–633, 2001.
[28] J. Jiang, K. Parto, W. Cao, and K. Banerjee, “Ultimate monolithic-3d integration with
2d materials: rationale, prospects, and challenges,” IEEE Journal of the Electron
Devices Society, vol. 7, pp. 878–887, 2019.
[29] A. B. Sachid, M. Tosun, S. B. Desai, C.-Y. Hsu, D.-H. Lien, S. R. Madhvapathy, Y.-
Z. Chen, M. Hettick, J. S. Kang, Y. Zeng, et al., “Monolithic 3d cmos using layered
semiconductors,” Adv. Mater, vol. 28, no. 13, pp. 2547–2554, 2016.
[30] X. Jia, Z. Cheng, B. Han, X. Cheng, Q. Wang, Y. Ran, W. Xu, Y. Li, P. Gao,
and L. Dai, “High-performance cmos inverter array with monolithic 3d architecture
based on cvd-grown n-mos2 and p-mote2,” Small, vol. 19, no. 19, p. 2207927, 2023.
[31] L. Tong, J. Wan, K. Xiao, J. Liu, J. Ma, X. Guo, L. Zhou, X. Chen, Y. Xia, S. Dai,
et al., “Heterogeneous complementary field-effect transistors based on silicon and
molybdenum disulfide,” Nature Electronics, vol. 6, no. 1, pp. 37–44, 2023.
[32] S.-X. Guan, T. H. Yang, C.-H. Yang, C.-J. Hong, B.-W. Liang, K. B. Simbulan, J.-H.
Chen, C.-J. Su, K.-S. Li, Y.-L. Zhong, et al., “Monolithic 3d integration of back-end
compatible 2d material fet on si finfet,” npj 2D Materials and Applications, vol. 7,
no. 1, p. 9, 2023.
[33] H. Xiao, “Introduction to semiconductor manufacturing technology, second edition,”
2012.
[34] T. Schram, Q. Smets, B. Groven, M. H. Heyne, E. Kunnen, A. Thiam, K. Devriendt,
A. Delabie, D. Lin, M. Lux, D. Chiappe, I. Asselberghs, S. Brus, C. Huyghebaert,
S. Sayan, A. Juncker, M. Caymax, and I. P. Radu, “Ws2 transistors on 300 mm
wafers with beol compatibility,” in 2017 47th European Solid-State Device Research
Conference (ESSDERC), pp. 212–215, 2017.
[35] J.-y. Kim, X. Ju, K.-W. Ang, and D. Chi, “Van der waals layer transfer of 2d materials
for monolithic 3d electronic system integration: Review and outlook,” ACS Nano,
vol. 17, no. 3, pp. 1831–1844, 2023. PMID: 36655854.
[36] T. Schram, Q. Smets, D. Radisic, B. Groven, D. Cott, A. Thiam, W. Li, E. Dupuy,
K. Vandersmissen, T. Maurice, et al., “High yield and process uniformity for 300
mm integrated ws 2 fets,” in 2021 Symposium on VLSI Technology, pp. 1–2, IEEE,
2021.
[37] Q. Smets, T. Schram, D. Verreck, D. Cott, B. Groven, Z. Ahmed, B. Kaczer, J. Mitard,
X. Wu, S. Kundu, et al., “Scaling of double-gated ws 2 fets to sub-5nm physical
gate length fabricated in a 300mm fab,” in 2021 IEEE International Electron Devices
Meeting (IEDM), pp. 34–2, IEEE, 2021.
[38] D. Lin, X. Wu, D. Cott, B. Groven, P. Morin, D. Verreck, S. Sutar, I. Asselberghs,
and I. Radu, “Scaling synthetic ws2 dual-gate mos devices towards sub-nm cet,” in
2021 Symposium on VLSI Technology, pp. 1–2, IEEE, 2021.
[39] I. Asselberghs, Q. Smets, T. Schram, B. Groven, D. Verreck, A. Afzalian,
G. Arutchelvan, A. Gaur, D. Cott, T. Maurice, et al., “Wafer-scale integration of
double gated ws 2-transistors in 300mm si cmos fab,” in 2020 IEEE International
Electron Devices Meeting (IEDM), pp. 40–2, IEEE, 2020.
[40] T. Schram, Q. Smets, B. Groven, M. Heyne, E. Kunnen, A. Thiam, K. Devriendt,
A. Delabie, D. Lin, M. Lux, et al., “Ws 2 transistors on 300 mm wafers with beol
compatibility,” in 2017 47th European Solid-State Device Research Conference
(ESSDERC), pp. 212–215, IEEE, 2017.
[41] T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, and C. Schüller, “Low-temperature
photocarrier dynamics in monolayer mos2,” Applied Physics Letters, vol. 99, no. 10,
2011.
[42] G. Lucovsky, S. Kim, D. Tsu, G. Fountain, and R. Markunas, “The effects of subcutaneous
oxidation at the interfaces between elemental and compound semiconductors
and sio2 thin films deposited by remote plasma enhanced chemical vapor deposition,”
Journal of Vacuum Science & Technology B: Microelectronics Processing and
Phenomena, vol. 7, no. 4, pp. 861–869, 1989.
[43] G.-H. Lee, X. Cui, Y. D. Kim, G. Arefe, X. Zhang, C.-H. Lee, F. Ye, K. Watanabe,
T. Taniguchi, P. Kim, et al., “Highly stable, dual-gated mos2 transistors encapsulated
by hexagonal boron nitride with gate-controllable contact, resistance, and threshold
voltage,” ACS nano, vol. 9, no. 7, pp. 7019–7026, 2015.
[44] W. Dou and Y. Tan, “Dual-gate low-voltage transparent electric-double-layer thinfilm
transistors with a top gate for threshold voltage modulation,” RSC advances,
vol. 10, no. 14, pp. 8093–8096, 2020.
[45] C. H. Jeon, J. G. Um, M. Mativenga, and J. Jang, “Fast threshold voltage compensation
amoled pixel circuit using secondary gate effect of dual gate a-igzo tfts,” IEEE
Electron Device Letters, vol. 37, no. 11, pp. 1450–1453, 2016.
[46] G. Baek, K. Abe, A. Kuo, H. Kumomi, and J. Kanicki, “Electrical properties and stability
of dual-gate coplanar homojunction dc sputtered amorphous indium–gallium–
zinc–oxide thin-film transistors and its application to am-oleds,” IEEE Transactions
on electron devices, vol. 58, no. 12, pp. 4344–4353, 2011.
[47] B. Le Borgne, A.-C. Salaün, and L. Pichon, “Electrical properties of self-aligned
gate-all-around polycrystalline silicon nanowires field-effect transistors,” Microelectronic
Engineering, vol. 150, pp. 32–38, 2016.
[48] F. Liao, Y. Sheng, Z. Guo, H. Tang, Y. Wang, L. Zong, X. Chen, A. Riaud, J. Zhu,
Y. Xie, et al., “Mos 2 dual-gate transistors with electrostatically doped contacts,”
Nano Research, vol. 12, pp. 2515–2519, 2019.
[49] J. Yi, X. Sun, C. Zhu, S. Li, Y. Liu, X. Zhu, W. You, D. Liang, Q. Shuai, Y. Wu, et al.,
“Double-gate mos2 field-effect transistors with full-range tunable threshold voltage
for multifunctional logic circuits,” Advanced Materials, vol. 33, no. 27, p. 2101036,
2021.
[50] C. Wang, Z. Hu, X. He, C. Liao, and S. Zhang, “One gate diode-connected dual-gate
a-igzo tft driven pixel circuit for active matrix organic light-emitting diode displays,”
IEEE Transactions on Electron Devices, vol. 63, no. 9, pp. 3800–3803, 2016.
[51] M. J. Seok, M. H. Choi, M. Mativenga, D. Geng, D. Y. Kim, and J. Jang, “A fullswing
a-igzo tft-based inverter with a top-gate-bias-induced depletion load,” IEEE
electron device letters, vol. 32, no. 8, pp. 1089–1091, 2011.
[52] M.-J. Liu, W.-J. Lan, C.-S. Huang, C.-Z. Chen, R.-H. Cyu, P. A. L. Sino, Y.-L. Yang,
P.-W. Chiu, F.-C. Chuang, C.-H. Shen, et al., “High-performance monolithic 3d integrated
complementary inverters based on monolayer n-mos2 and p-wse2,” Small,
vol. 20, no. 17, p. 2307728, 2024.
[53] X. Xiong, A. Tong, X. Wang, S. Liu, X. Li, R. Huang, and Y. Wu, “Demonstration of
vertically-stacked cvd monolayer channels: Mos 2 nanosheets gaa-fet with i on> 700
μa/μm and mos2/wse2 cfet,” in 2021 IEEE International Electron Devices Meeting
(IEDM), pp. 7–5, IEEE, 2021.
[54] S. S. Zaman, P. Kumar, M. P. Sarma, A. Ray, and G. Trivedi, “Design and simulation
of sf-finfet and sd-finfet and their performance in analog, rf and digital applications,”
in 2017 IEEE International Symposium on Nanoelectronic and Information Systems
(iNIS), pp. 200–205, IEEE, 2017.
[55] Y. Xia, L. Zong, Y. Pan, X. Chen, L. Zhou, Y. Song, L. Tong, X. Guo, J. Ma,
S. Gou, et al., “Wafer-scale demonstration of mbc-fet and c-fet arrays based on twodimensional
semiconductors,” Small, vol. 18, no. 20, p. 2107650, 2022.
[56] W. Du, X. Jia, Z. Cheng, W. Xu, Y. Li, and L. Dai, “Low-power-consumption cmos
inverter array based on cvd-grown p-mote2 and n-mos2,” Iscience, vol. 24, no. 12,
2021.
[57] S. Liu, K. Yuan, X. Xu, R. Yin, D.-Y. Lin, Y. Li, K. Watanabe, T. Taniguchi,
Y. Meng, L. Dai, et al., “Hysteresis-free hexagonal boron nitride encapsulated 2d
semiconductor transistors, nmos and cmos inverters,” Advanced Electronic Materials,
vol. 5, no. 2, p. 1800419, 2019.
[58] J. Wang, X. Guo, Z. Yu, Z. Ma, Y. Liu, Z. Lin, M. Chan, Y. Zhu, X. Wang, and
Y. Chai, “Low-power complementary inverter with negative capacitance 2d semiconductor
transistors,” Advanced Functional Materials, vol. 30, no. 46, p. 2003859,
2020.
[59] S. G. Seo and S. H. Jin, “Photosensitive complementary inverters based on n-channel
mos2 and p-channel mote2 transistors for light-to-frequency conversion circuits,”
physica status solidi (RRL)–Rapid Research Letters, vol. 13, no. 11, p. 1900317,
2019.
[60] P. J. Jeon, J. S. Kim, J. Y. Lim, Y. Cho, A. Pezeshki, H. S. Lee, S. Yu, S.-W. Min, and
S. Im, “Low power consumption complementary inverters with n-mos2 and p-wse2
dichalcogenide nanosheets on glass for logic and light-emitting diode circuits,” ACS
applied materials & interfaces, vol. 7, no. 40, pp. 22333–22340, 2015.
[61] J. Pu, K. Funahashi, C. H. Chen, M. Y. Li, L. J. Li, and T. Takenobu, “Highly flexible
and high-performance complementary inverters of large-area transition metal
dichalcogenide monolayers,” Advanced Materials, 2016.