簡易檢索 / 詳目顯示

研究生: 費文遠
Fei, Wen-Yuan
論文名稱: 晶圓級深紫外光曝光全蝕刻二維材料連續膜之局域型背閘極陣列元件製程
Fabrication of Dual-Gate 2D Material Transistors via Wafer-Scale Deep Ultraviolet Exposure and Full-Etching Process
指導教授: 邱博文
Chiu, Po-Wen
口試委員: 沈昌宏
Shen, Chang-Hong
葉伯淳
Yeh, Po-Chun
學位類別: 碩士
Master
系所名稱: 半導體研究學院 - 半導體研究學院
College of Semiconductor Research
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 116
中文關鍵詞: 二維材料深紫外光曝光技術製程平台先進半導體反相器可調控臨界電壓鰭式半導體三維積體電路整合
外文關鍵詞: 2D material, deep ultraviolet lithography, process flow platform, advanced semiconductor, inverter, tunable threshold voltage, FinFET, 3DIC
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二維材料作為新一代半導體材料,相較於傳統矽基晶片展現出顯著優
    勢。例如,其晶格結構不含懸鍵,能有效抑制通道厚度縮減時的載子遷移
    率退化。此外,在奈米尺度下,二維材料的閘極控制能力優於矽基鰭式場
    效電晶體(FinFET),顯示其在“More Moore”技術發展路徑中的潛力。
    另一方面,二維材料層間缺乏共價鍵結合,使得機械轉移與精確厚度
    控制成為可能。此類材料可透過BEOL 低溫製程進行製造,對底層基板
    的選擇性要求極低,因而適用於現有矽製程平台,促進異質整合,並推動
    “More than Moore”技術的實現。
    然而二維材料電晶體相較於傳統矽製程,在工業化的道路上仍有一些瓶
    頸需克服,基於上述技術發展趨勢與研究目標,本論文旨在使二維材料電
    晶體的製作方式逐步接近矽基晶片架構,並分為幾個主要階段:
    矽基相容製程開發:採用深紫外光微影技術製作二維材料電晶體,縮小
    元件尺寸,並開發上閘極結構,以初步展示此邏輯結構之特性能否投入後
    續應用。
    矽基電晶體匹配元件開發:開發晶圓級大規模二維材料雙閘極電晶體陣
    列,透過雙閘極元件,在元件縮小尺度時提供更精確的閘極控制,提高開
    關特性,並有效減少短通道效應。並進行三維垂直整合的初步驗證,以評
    估其可行性與潛在應用價值。
    與矽基元件整合:利用上述技術在矽基鰭式電晶體晶圓上進行垂直異質
    整合,實現單晶片式三維邏輯積體電路。


    Two-dimensional (2D) semiconductors offer promising potential for post-
    Silicon logic devices. Their atomically thin structures and symmetric lattices
    prevent mobility degradation from surface scattering and enhance electrostatic
    gate control, making them suitable for nanoscale applications. These
    attributes align with the “More Moore” paradigm, extending transistor
    scalability.
    The van der Waals (vdW) bonding in 2D materials facilitates precise
    mechanical transfer processes, enabling thickness control and compatibility
    with low-temperature back-end-of-line (BEOL) fabrication. Their minimal
    substrate selectivity further supports heterogeneous integration with Si
    CMOS technology, advancing the “More than Moore”vision. This thesis
    encompasses a detailed examination of the aforementioned context and the
    advancement of related technologies. It outlines three key stages that bring
    2D materials closer to integration with Si-based semiconductor devices.
    Si-Compatible Device: Conduct with wafer-level deep ultraviolet (DUV)
    photolithography for the fabrication of two-dimensional materials, reduce
    transistor dimensions, and develop dual-gate two-dimensional material transistors
    to match the characteristics of silicon-based transistors.
    Si-Compatible Process: Develop large-scale two-dimensional material
    transistor arrays on 8-inch wafers and perform preliminary verification of
    three-dimensional vertical integration.
    Integration with Silicon-Based Devices: Utilize the aforementioned
    technologies to achieve vertical heterogeneous integration on silicon fin
    type transistor wafers, enabling the realization of monolithic three-dimensional logic integrated circuits.

    目錄 摘要................................................................................................................................ i Abstract .......................................................................................................................... ii 致謝................................................................................................................................ iv 目錄................................................................................................................................ x 第1 章序論................................................................................................................... 1 1.1 半導體產業發展、限制以及未來展望............................................................ 1 1.2 二維半導體的發展與演進.............................................................................. 5 1.3 研究動機與論文架構..................................................................................... 7 第2 章過度金屬二硫化物介紹..................................................................................... 9 2.1 過度金屬二硫化物組成.................................................................................. 9 2.2 過度金屬二硫化物晶體結構.......................................................................... 11 2.3 過度金屬二硫化物能帶結構.......................................................................... 13 2.4 二維材料電晶體............................................................................................. 14 第3 章三維積體電路應用............................................................................................. 18 3.1 矽基鰭式場效電晶體..................................................................................... 18 3.2 三維積體電路的發展與演進.......................................................................... 19 3.3 異質整合........................................................................................................ 21 第4 章實驗流程設計.................................................................................................... 24 4.1 實驗儀器........................................................................................................ 24 4.1.1 微影設備........................................................................................ 24 4.1.2 薄膜沉積蝕刻設備......................................................................... 28 4.1.3 檢測設備........................................................................................ 37 4.2 晶圓級深紫外光曝光全蝕刻二維材料連續膜製程......................................... 40 4.2.1 基板製備........................................................................................ 42 4.2.2 材料分析........................................................................................ 42 4.2.3 材料轉移........................................................................................ 45 4.2.4 主動區定義.................................................................................... 46 4.2.5 二次原子層沉積............................................................................. 48 4.2.6 接觸穿孔........................................................................................ 49 4.2.7 接觸金屬........................................................................................ 52 4.2.8 上閘極........................................................................................... 53 4.3 晶圓級二維材料連續膜局域型雙閘極電晶體製程......................................... 55 4.3.1 局域背閘極設計............................................................................. 55 4.3.2 雙閘極場效電晶體......................................................................... 56 4.3.3 傳統局域型底閘極挑戰.................................................................. 57 4.3.4 局域型底閘極金屬選擇及定義....................................................... 59 4.3.5 絕緣層沉積.................................................................................... 59 4.3.6 介電層平坦化與高介電係數介電層沉積........................................ 59 4.4 二維材料電晶體與P 型鰭式電晶體之異質整合製程..................................... 61 4.4.1 矽基鰭式電晶體晶圓製備.............................................................. 62 4.4.2 第一次平坦化................................................................................ 65 4.4.3 金屬穿孔及定義局域背閘極.......................................................... 66 4.4.4 第二次平坦化................................................................................ 67 4.4.5 導線連接........................................................................................ 67 第5 章實驗結果........................................................................................................... 70 5.1 元件量測簡介................................................................................................ 70 5.1.1 元件轉移特性曲線......................................................................... 70 5.1.2 元件輸出特性曲線......................................................................... 74 5.2 晶圓級深紫外光曝光矽基相容二維材料電晶體陣列...................................... 76 5.2.1 單閘極量測結果............................................................................. 77 5.2.2 雙閘極量測結果............................................................................. 82 5.3 局域型雙閘極二維材料電晶體陣列............................................................... 85 5.3.1 單閘極量測結果............................................................................. 87 5.3.2 雙閘極量測結果............................................................................. 89 5.4 晶圓級二維電晶體與矽基鰭式電晶體之單晶片式三維積體電路................... 96 5.4.1 矽基鰭式電晶體............................................................................. 97 5.4.2 異質整合式單晶片三維積體電路之反向器.................................... 98 第6 章結論與未來展望................................................................................................109 參考文獻......................................................................................................................... 111

    參考文獻
    [1] 陳之藩, “謝天,” 在春風裡, 1962.
    [2] Y. Liu, X. Duan, H.-J. Shin, S. Park, Y. Huang, and X. Duan, “Promises and prospects
    of two-dimensional transistors,” Nature, vol. 591, no. 7848, pp. 43–53, 2021.
    [3] C. Liu, H. Chen, S. Wang, Q. Liu, Y.-G. Jiang, D. W. Zhang, M. Liu, and P. Zhou,
    “Two-dimensional materials for next-generation computing technologies,” Nature
    Nanotechnology, vol. 15, no. 7, pp. 545–557, 2020.
    [4] T.-T. Wu, C.-H. Shen, J.-M. Shieh, W.-H. Huang, H.-H. Wang, F.-K. Hsueh, H.-C.
    Chen, C.-C. Yang, T.-Y. Hsieh, B.-Y. Chen, Y.-S. Shiao, C.-S. Yang, G.-W. Huang,
    K.-S. Li, T.-J. Hsueh, C.-F. Chen, W.-H. Chen, F.-L. Yang, M.-F. Chang, and W.-
    K. Yeh, “Low-cost and tsv-free monolithic 3d-ic with heterogeneous integration of
    logic, memory and sensor analogy circuitry for internet of things,” in 2015 IEEE
    International Electron Devices Meeting (IEDM), pp. 25.4.1–25.4.4, 2015.
    [5] K. S. Novoselov, A. K. Geim, S. V. Morozov, D.-e. Jiang, Y. Zhang, S. V. Dubonos,
    I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon
    films,” science, vol. 306, no. 5696, pp. 666–669, 2004.
    [6] D. Pierucci, H. Henck, C. H. Naylor, H. Sediri, E. Lhuillier, A. Balan, J. E. Rault, Y. J.
    Dappe, F. Bertran, P. L. Fèvre, et al., “Large area molybdenum disulphide-epitaxial
    graphene vertical van der waals heterostructures,” Scientific reports, vol. 6, no. 1,
    p. 26656, 2016.
    [7] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang,
    “Emerging photoluminescence in monolayer mos2,” Nano letters, vol. 10, no. 4,
    pp. 1271–1275, 2010.
    [8] Y. Liu, X. Duan, H.-J. Shin, S. Park, Y. Huang, and X. Duan, “Promises and prospects
    of two-dimensional transistors,” Nature, vol. 591, no. 7848, pp. 43–53, 2021.
    [9] C.-H. Lee, G.-H. Lee, A. M. Van Der Zande, W. Chen, Y. Li, M. Han, X. Cui,
    G. Arefe, C. Nuckolls, T. F. Heinz, et al., “Atomically thin p–n junctions with van der
    waals heterointerfaces,” Nature nanotechnology, vol. 9, no. 9, pp. 676–681, 2014.
    [10] D. Akinwande, C. Huyghebaert, C.-H. Wang, M. I. Serna, S. Goossens, L.-J. Li, H.-
    S. P. Wong, and F. H. Koppens, “Graphene and two-dimensional materials for silicon
    technology,” Nature, vol. 573, no. 7775, pp. 507–518, 2019.
    [11] S.-K. Su, E. Chen, T. Y. T. Hung, M.-Z. Li, G. Pitner, C.-C. Cheng, H. Wang, J. Cai,
    H.-S. P. Wong, and I. P. Radu, “Perspective on low-dimensional channel materials for
    extremely scaled cmos,” in 2022 IEEE Symposium on VLSI Technology and Circuits
    (VLSI Technology and Circuits), pp. 403–404, 2022.
    [12] K. P. O’Brien, C. Dorow, A. Penumatcha, K. Maxey, S. Lee, C. Naylor, A. Hsiao,
    B. Holybee, C. Rogan, D. Adams, et al., “Advancing 2d monolayer cmos through
    contact, channel and interface engineering,” in 2021 IEEE International Electron
    Devices Meeting (IEDM), pp. 7–1, IEEE, 2021.
    [13] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry
    of two-dimensional layered transition metal dichalcogenide nanosheets,” Nature
    chemistry, vol. 5, no. 4, pp. 263–275, 2013.
    [14] M. Chhowalla, D. Jena, and H. Zhang, “Two-dimensional semiconductors for transistors,”
    Nature Reviews Materials, vol. 1, no. 11, pp. 1–15, 2016.
    [15] A. K. Geim and I. V. Grigorieva, “Van der waals heterostructures,” Nature, vol. 499,
    no. 7459, pp. 419–425, 2013.
    [16] I. Song, C. Park, and H. C. Choi, “Synthesis and properties of molybdenum disulphide:
    from bulk to atomic layers,” Rsc Advances, vol. 5, no. 10, pp. 7495–7514,
    2015.
    [17] A. Ambrosi, Z. Sofer, and M. Pumera, “2h→ 1t phase transition and hydrogen evolution
    activity of mos 2, mose 2, ws 2 and wse 2 strongly depends on the mx 2
    composition,” Chemical Communications, vol. 51, no. 40, pp. 8450–8453, 2015.
    [18] I. N. Yakovkin, “Dirac cones in graphene, interlayer interaction in layered materials,
    and the band gap in mos2,” Crystals, vol. 6, no. 11, p. 143, 2016.
    [19] A. Castellanos-Gomez, “Why all the fuss about 2d semiconductors?,” Nature Photonics,
    vol. 10, no. 4, pp. 202–204, 2016.
    [20] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer
    mos2 transistors,” Nature nanotechnology, vol. 6, no. 3, pp. 147–150, 2011.
    [21] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics
    and optoelectronics of two-dimensional transition metal dichalcogenides,”
    Nature nanotechnology, vol. 7, no. 11, pp. 699–712, 2012.
    [22] V. Podzorov, M. Gershenson, C. Kloc, R. Zeis, and E. Bucher, “High-mobility fieldeffect
    transistors based on transition metal dichalcogenides,” Applied Physics Letters,
    vol. 84, no. 17, pp. 3301–3303, 2004.
    [23] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer
    mos2 transistors,” Nature nanotechnology, vol. 6, no. 3, pp. 147–150, 2011.
    [24] Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu,
    J. T.-W. Wang, C.-S. Chang, L.-J. Li, et al., “Synthesis of large-area mos2 atomic
    layers with chemical vapor deposition,” arXiv preprint arXiv:1202.5458, 2012.
    [25] H. Yu, M. Liao, W. Zhao, G. Liu, X. Zhou, Z. Wei, X. Xu, K. Liu, Z. Hu, K. Deng,
    et al., “Wafer-scale growth and transfer of highly-oriented monolayer mos2 continuous
    films,” ACS nano, vol. 11, no. 12, pp. 12001–12007, 2017.
    [26] K. S. Kim, S. Seo, J. Kwon, D. Lee, C. Kim, J.-E. Ryu, J. Kim, J. M. Suh, H.-
    G. Jung, Y. Jo, et al., “Growth-based monolithic 3d integration of single-crystal 2d
    semiconductors,” Nature, vol. 636, no. 8043, pp. 615–621, 2024.
    [27] K. Banerjee, S. J. Souri, P. Kapur, and K. C. Saraswat, “3-d ics: A novel chip design
    for improving deep-submicrometer interconnect performance and systems-on-chip
    integration,” Proceedings of the IEEE, vol. 89, no. 5, pp. 602–633, 2001.
    [28] J. Jiang, K. Parto, W. Cao, and K. Banerjee, “Ultimate monolithic-3d integration with
    2d materials: rationale, prospects, and challenges,” IEEE Journal of the Electron
    Devices Society, vol. 7, pp. 878–887, 2019.
    [29] A. B. Sachid, M. Tosun, S. B. Desai, C.-Y. Hsu, D.-H. Lien, S. R. Madhvapathy, Y.-
    Z. Chen, M. Hettick, J. S. Kang, Y. Zeng, et al., “Monolithic 3d cmos using layered
    semiconductors,” Adv. Mater, vol. 28, no. 13, pp. 2547–2554, 2016.
    [30] X. Jia, Z. Cheng, B. Han, X. Cheng, Q. Wang, Y. Ran, W. Xu, Y. Li, P. Gao,
    and L. Dai, “High-performance cmos inverter array with monolithic 3d architecture
    based on cvd-grown n-mos2 and p-mote2,” Small, vol. 19, no. 19, p. 2207927, 2023.
    [31] L. Tong, J. Wan, K. Xiao, J. Liu, J. Ma, X. Guo, L. Zhou, X. Chen, Y. Xia, S. Dai,
    et al., “Heterogeneous complementary field-effect transistors based on silicon and
    molybdenum disulfide,” Nature Electronics, vol. 6, no. 1, pp. 37–44, 2023.
    [32] S.-X. Guan, T. H. Yang, C.-H. Yang, C.-J. Hong, B.-W. Liang, K. B. Simbulan, J.-H.
    Chen, C.-J. Su, K.-S. Li, Y.-L. Zhong, et al., “Monolithic 3d integration of back-end
    compatible 2d material fet on si finfet,” npj 2D Materials and Applications, vol. 7,
    no. 1, p. 9, 2023.
    [33] H. Xiao, “Introduction to semiconductor manufacturing technology, second edition,”
    2012.
    [34] T. Schram, Q. Smets, B. Groven, M. H. Heyne, E. Kunnen, A. Thiam, K. Devriendt,
    A. Delabie, D. Lin, M. Lux, D. Chiappe, I. Asselberghs, S. Brus, C. Huyghebaert,
    S. Sayan, A. Juncker, M. Caymax, and I. P. Radu, “Ws2 transistors on 300 mm
    wafers with beol compatibility,” in 2017 47th European Solid-State Device Research
    Conference (ESSDERC), pp. 212–215, 2017.
    [35] J.-y. Kim, X. Ju, K.-W. Ang, and D. Chi, “Van der waals layer transfer of 2d materials
    for monolithic 3d electronic system integration: Review and outlook,” ACS Nano,
    vol. 17, no. 3, pp. 1831–1844, 2023. PMID: 36655854.
    [36] T. Schram, Q. Smets, D. Radisic, B. Groven, D. Cott, A. Thiam, W. Li, E. Dupuy,
    K. Vandersmissen, T. Maurice, et al., “High yield and process uniformity for 300
    mm integrated ws 2 fets,” in 2021 Symposium on VLSI Technology, pp. 1–2, IEEE,
    2021.
    [37] Q. Smets, T. Schram, D. Verreck, D. Cott, B. Groven, Z. Ahmed, B. Kaczer, J. Mitard,
    X. Wu, S. Kundu, et al., “Scaling of double-gated ws 2 fets to sub-5nm physical
    gate length fabricated in a 300mm fab,” in 2021 IEEE International Electron Devices
    Meeting (IEDM), pp. 34–2, IEEE, 2021.
    [38] D. Lin, X. Wu, D. Cott, B. Groven, P. Morin, D. Verreck, S. Sutar, I. Asselberghs,
    and I. Radu, “Scaling synthetic ws2 dual-gate mos devices towards sub-nm cet,” in
    2021 Symposium on VLSI Technology, pp. 1–2, IEEE, 2021.
    [39] I. Asselberghs, Q. Smets, T. Schram, B. Groven, D. Verreck, A. Afzalian,
    G. Arutchelvan, A. Gaur, D. Cott, T. Maurice, et al., “Wafer-scale integration of
    double gated ws 2-transistors in 300mm si cmos fab,” in 2020 IEEE International
    Electron Devices Meeting (IEDM), pp. 40–2, IEEE, 2020.
    [40] T. Schram, Q. Smets, B. Groven, M. Heyne, E. Kunnen, A. Thiam, K. Devriendt,
    A. Delabie, D. Lin, M. Lux, et al., “Ws 2 transistors on 300 mm wafers with beol
    compatibility,” in 2017 47th European Solid-State Device Research Conference
    (ESSDERC), pp. 212–215, IEEE, 2017.
    [41] T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, and C. Schüller, “Low-temperature
    photocarrier dynamics in monolayer mos2,” Applied Physics Letters, vol. 99, no. 10,
    2011.
    [42] G. Lucovsky, S. Kim, D. Tsu, G. Fountain, and R. Markunas, “The effects of subcutaneous
    oxidation at the interfaces between elemental and compound semiconductors
    and sio2 thin films deposited by remote plasma enhanced chemical vapor deposition,”
    Journal of Vacuum Science & Technology B: Microelectronics Processing and
    Phenomena, vol. 7, no. 4, pp. 861–869, 1989.
    [43] G.-H. Lee, X. Cui, Y. D. Kim, G. Arefe, X. Zhang, C.-H. Lee, F. Ye, K. Watanabe,
    T. Taniguchi, P. Kim, et al., “Highly stable, dual-gated mos2 transistors encapsulated
    by hexagonal boron nitride with gate-controllable contact, resistance, and threshold
    voltage,” ACS nano, vol. 9, no. 7, pp. 7019–7026, 2015.
    [44] W. Dou and Y. Tan, “Dual-gate low-voltage transparent electric-double-layer thinfilm
    transistors with a top gate for threshold voltage modulation,” RSC advances,
    vol. 10, no. 14, pp. 8093–8096, 2020.
    [45] C. H. Jeon, J. G. Um, M. Mativenga, and J. Jang, “Fast threshold voltage compensation
    amoled pixel circuit using secondary gate effect of dual gate a-igzo tfts,” IEEE
    Electron Device Letters, vol. 37, no. 11, pp. 1450–1453, 2016.
    [46] G. Baek, K. Abe, A. Kuo, H. Kumomi, and J. Kanicki, “Electrical properties and stability
    of dual-gate coplanar homojunction dc sputtered amorphous indium–gallium–
    zinc–oxide thin-film transistors and its application to am-oleds,” IEEE Transactions
    on electron devices, vol. 58, no. 12, pp. 4344–4353, 2011.
    [47] B. Le Borgne, A.-C. Salaün, and L. Pichon, “Electrical properties of self-aligned
    gate-all-around polycrystalline silicon nanowires field-effect transistors,” Microelectronic
    Engineering, vol. 150, pp. 32–38, 2016.
    [48] F. Liao, Y. Sheng, Z. Guo, H. Tang, Y. Wang, L. Zong, X. Chen, A. Riaud, J. Zhu,
    Y. Xie, et al., “Mos 2 dual-gate transistors with electrostatically doped contacts,”
    Nano Research, vol. 12, pp. 2515–2519, 2019.
    [49] J. Yi, X. Sun, C. Zhu, S. Li, Y. Liu, X. Zhu, W. You, D. Liang, Q. Shuai, Y. Wu, et al.,
    “Double-gate mos2 field-effect transistors with full-range tunable threshold voltage
    for multifunctional logic circuits,” Advanced Materials, vol. 33, no. 27, p. 2101036,
    2021.
    [50] C. Wang, Z. Hu, X. He, C. Liao, and S. Zhang, “One gate diode-connected dual-gate
    a-igzo tft driven pixel circuit for active matrix organic light-emitting diode displays,”
    IEEE Transactions on Electron Devices, vol. 63, no. 9, pp. 3800–3803, 2016.
    [51] M. J. Seok, M. H. Choi, M. Mativenga, D. Geng, D. Y. Kim, and J. Jang, “A fullswing
    a-igzo tft-based inverter with a top-gate-bias-induced depletion load,” IEEE
    electron device letters, vol. 32, no. 8, pp. 1089–1091, 2011.
    [52] M.-J. Liu, W.-J. Lan, C.-S. Huang, C.-Z. Chen, R.-H. Cyu, P. A. L. Sino, Y.-L. Yang,
    P.-W. Chiu, F.-C. Chuang, C.-H. Shen, et al., “High-performance monolithic 3d integrated
    complementary inverters based on monolayer n-mos2 and p-wse2,” Small,
    vol. 20, no. 17, p. 2307728, 2024.
    [53] X. Xiong, A. Tong, X. Wang, S. Liu, X. Li, R. Huang, and Y. Wu, “Demonstration of
    vertically-stacked cvd monolayer channels: Mos 2 nanosheets gaa-fet with i on> 700
    μa/μm and mos2/wse2 cfet,” in 2021 IEEE International Electron Devices Meeting
    (IEDM), pp. 7–5, IEEE, 2021.
    [54] S. S. Zaman, P. Kumar, M. P. Sarma, A. Ray, and G. Trivedi, “Design and simulation
    of sf-finfet and sd-finfet and their performance in analog, rf and digital applications,”
    in 2017 IEEE International Symposium on Nanoelectronic and Information Systems
    (iNIS), pp. 200–205, IEEE, 2017.
    [55] Y. Xia, L. Zong, Y. Pan, X. Chen, L. Zhou, Y. Song, L. Tong, X. Guo, J. Ma,
    S. Gou, et al., “Wafer-scale demonstration of mbc-fet and c-fet arrays based on twodimensional
    semiconductors,” Small, vol. 18, no. 20, p. 2107650, 2022.
    [56] W. Du, X. Jia, Z. Cheng, W. Xu, Y. Li, and L. Dai, “Low-power-consumption cmos
    inverter array based on cvd-grown p-mote2 and n-mos2,” Iscience, vol. 24, no. 12,
    2021.
    [57] S. Liu, K. Yuan, X. Xu, R. Yin, D.-Y. Lin, Y. Li, K. Watanabe, T. Taniguchi,
    Y. Meng, L. Dai, et al., “Hysteresis-free hexagonal boron nitride encapsulated 2d
    semiconductor transistors, nmos and cmos inverters,” Advanced Electronic Materials,
    vol. 5, no. 2, p. 1800419, 2019.
    [58] J. Wang, X. Guo, Z. Yu, Z. Ma, Y. Liu, Z. Lin, M. Chan, Y. Zhu, X. Wang, and
    Y. Chai, “Low-power complementary inverter with negative capacitance 2d semiconductor
    transistors,” Advanced Functional Materials, vol. 30, no. 46, p. 2003859,
    2020.
    [59] S. G. Seo and S. H. Jin, “Photosensitive complementary inverters based on n-channel
    mos2 and p-channel mote2 transistors for light-to-frequency conversion circuits,”
    physica status solidi (RRL)–Rapid Research Letters, vol. 13, no. 11, p. 1900317,
    2019.
    [60] P. J. Jeon, J. S. Kim, J. Y. Lim, Y. Cho, A. Pezeshki, H. S. Lee, S. Yu, S.-W. Min, and
    S. Im, “Low power consumption complementary inverters with n-mos2 and p-wse2
    dichalcogenide nanosheets on glass for logic and light-emitting diode circuits,” ACS
    applied materials & interfaces, vol. 7, no. 40, pp. 22333–22340, 2015.
    [61] J. Pu, K. Funahashi, C. H. Chen, M. Y. Li, L. J. Li, and T. Takenobu, “Highly flexible
    and high-performance complementary inverters of large-area transition metal
    dichalcogenide monolayers,” Advanced Materials, 2016.

    QR CODE