研究生: |
王筱嬋 Wang, Hsiao-Chan |
---|---|
論文名稱: |
2-氰基苯並噻唑縮合反應於位向選擇性蛋白質固化之應用 The Application of 2-Cyanobenzothiazole Condensation for Site-Selective Protein Immobilization |
指導教授: | 林俊成 |
口試委員: |
林伯樵
陳貴通 林俊成 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 138 |
中文關鍵詞: | 蛋白質固化 、位向選擇性修飾 、2-氰基苯並噻唑縮合反應 |
外文關鍵詞: | Protein Immobilization, Site-Specific Modification, CBT condensation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
蛋白質固化是將目標蛋白質與固態載體經由適當的反應進行連結,使蛋白質能夠固定於固態載體表面並進行後續應用。在本論文中,利用2-cyanobenzothiazole(CBT)與1,2-aminothiol在水相溶液中進行快速縮合反應的特性,發展出具有位向選擇性的蛋白質固化製程。在固態載體的選擇上,玻片以及本實驗室已開發成熟的磁性奈米粒子,皆能夠成功地作為蛋白質位向專一性固化的載體。在蛋白質微陣列晶片的製程中,利用丙炔胺(propargylamine)修飾市售的N-hydroxysuccinimide(NHS)玻片得到參鍵表面修飾玻片,再透過點擊反應(Cu(I)-catalyzed alkyne/azide cycloaddition,CuAAC,亦稱 click chemistry)將末端修飾疊氮基之 CBT 衍生物裝配於玻片表面。CBT 功能化磁性奈米粒子的製程則是利用反應性較高的醯氯功能化磁性奈米粒子與帶有胺基之 CBT 衍生物進行親核性反應而得。
結合蛋白質純化表現系統 IMPACTTM-CN system 以及菸草鑲嵌病毒蛋白水解酶,我們能夠選擇性地經由化學或是酵素方式於蛋白質 N 端位或是 C 端位建構 1,2-aminothiol,並以此官能基進行蛋白質位向專一性固化。除了成功地固化綠色螢光蛋白之外,我們利用蛋白質晶片分析的結果顯示,以 N 端位固化的麩胺基硫轉移酵素較 C 端位進行固化具有較佳的活性;經由 N 或 C 端進行固化後的麥芽糖結合蛋白,其活性則差異不大。而以 N 端位固化於磁性奈米粒子上的菸草鑲嵌病毒蛋白水解酶其活性較以C端固化的方式佳。
在此我們成功地利用 CBT 與 1,2-aminothiol 的反應並結合IMPACTTM-CN system 以及菸草鑲嵌病毒蛋白水解酶,快速地製備出以位向選擇性固化樣品之蛋白質晶片以及磁性奈米粒子,並探討蛋白質固化位向與固化後活性間的關聯性。
Recently, protein immobilization has received considerable attention. In general, proteins are attached on solid supports through biocompatible reactions. In this thesis, a rapid and mild condensation reaction between 2-cyanobenzothiazole (CBT) and terminal 1,2-aminothiol was applied to achieve site-specific protein immobilization. Glass slides and magnetic nanoparticles (MNPs) were chosen as ideal solid supports to demonstrate the concept. The azido-CBT derivative was immobilized on alkynated glass slides through Cu(I)-catalyzed alkyne/azide cycloaddition (CuAAC, click chemistry) to prepared CBT-functionalized glass slides. The CBT-functionalized magnetic nanoparticles were prepared by amide bond formation between amino-CBT derivative and activated acylchloride group on MNPs.
By combination of IMPACTTM-CN system and tobacco etch virus protease (TEVp), the terminal 1,2-aminothiol was generated either at the N-terminal or C-terminal of protein of interest and reacted with the CBT-solid supports to achieve the immobilization of protein. According to microarray data analysis, we found that the glutathione S-transferase (GST) immobilized from its N-terminal retained higher substrate binding activity than that from C-terminal; whereas there were no differences in activities between neither N-terminal nor C-terminal immobilized maltose-binding protein (MBP). It was also observed that the immobilization of TEVp through N-terminal preserved higher activity than immobilization through C-terminal.
The success of utilizing CBT condensation reaction and easily constructing terminal 1,2-aminothiol by IMPACTTM-CN system and TEVp makes possibility of the developed method for alternatively site-specific protein immobilization on glass slides and nanoparticles. Furthermore, it is also demonstrated that the orientations of protein are crucial for its activity after being immobilized.
1. Dixit, C. K.; Kaushik, A., Nano-structured arrays for multiplex analyses and Lab-on-a-Chip applications. Biochem. Biophys. Res. Commun. 2012, 419, 316-320.
2. Lee, J.; Ryoo, S. R.; Kim, S. K.; Ahn, J. H.; Min, D. H.; Yeo, W. S., Quantitation of surface-bound proteins on biochips using MALDI-TOF MS. Anal. Sci. 2011, 27, 1127-1131.
3. Kim, Y. E.; Yi, S. Y.; Lee, C. S.; Jung, Y.; Chung, B. H., Gold patterned biochips for on-chip immuno-MALDI-TOF MS: SPR imaging coupled multi-protein MS analysis. Analyst 2012, 137, 386-392.
4. Larsson, A.; Liedberg, B., Poly(ethylene glycol) gradient for biochip development. Langmuir 2007, 23, 11319-11325.
5. Ludden, M. J.; Mulder, A.; Tampe, R.; Reinhoudt, D. N.; Huskens, J., Molecular printboards as a general platform for protein immobilization: a supramolecular solution to nonspecific adsorption. Angew. Chem. Int. Ed. 2007, 46, 4104-4107.
6. Fodor, S. P.; Read, J. L.; Pirrung, M. C.; Stryer, L.; Lu, A. T.; Solas, D., Light-directed, spatially addressable parallel chemical synthesis. Science 1991, 251, 767-773.
7. Paul J. Hergenrother, K. M. D., and; Schreiber, S. L., Small-Molecule Microarrays: Covalent Attachment and Screening of Alcohol-Containing Small Molecules on Glass Slides. J. Am. Chem. Soc. 2000, 122, 7849.
8. Barnes-Seeman, D.; Park, S. B.; Koehler, A. N.; Schreiber, S. L., Expanding the functional group compatibility of small-molecule microarrays: discovery of novel calmodulin ligands. Angew. Chem. Int. Ed. 2003, 42, 2376-2379.
9. Salisbury, C. M.; Maly, D. J.; Ellman, J. A., Peptide microarrays for the determination of protease substrate specificity. J. Am. Chem. Soc. 2002, 124, 14868-14870.
10. Falsey, J. R.; Renil, M.; Park, S.; Li, S.; Lam, K. S., Peptide and small molecule microarray for high throughput cell adhesion and functional assays. Bioconjug. Chem. 2001, 12, 346-353.
11. Schena, M.; Shalon, D.; Davis, R. W.; Brown, P. O., Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995, 270, 467-470.
12. Ham, H. O.; Liu, Z.; Lau, K. H.; Lee, H.; Messersmith, P. B., Facile DNA immobilization on surfaces through a catecholamine polymer. Angew. Chem. Int. Ed. 2011, 50, 732-736.
13. Sardzik, R.; Sharma, R.; Kaloo, S.; Voglmeir, J.; Crocker, P. R.; Flitsch, S. L., Chemoenzymatic synthesis of sialooligosaccharides on arrays for studies of cell surface adhesion. Chem. Commun. 2011, 47, 5425-5427.
14. Pulsipher, A.; Yousaf, M. N., A renewable, chemoselective, and quantitative ligand density microarray for the study of biospecific interactions. Chem. Commun. 2011, 47, 523-525.
15. Serna, S.; Etxebarria, J.; Ruiz, N.; Martin-Lomas, M.; Reichardt, N. C., Construction of N-glycan microarrays by using modular synthesis and on-chip nanoscale enzymatic glycosylation. Chemistry 2010, 16, 13163-13175.
16. Park, S.; Lee, M. R.; Shin, I., Construction of carbohydrate microarrays by using one-step, direct immobilizations of diverse unmodified glycans on solid surfaces. Bioconjug. Chem. 2009, 20, 155-162.
17. Hsiao, H. Y.; Chen, M. L.; Wu, H. T.; Huang, L. D.; Chien, W. T.; Yu, C. C.; Jan, F. D.; Sahabuddin, S.; Chang, T. C.; Lin, C. C., Fabrication of carbohydrate microarrays through boronate formation. Chem. Commun. 2011, 47, 1187-1189.
18. Templin, M. F.; Stoll, D.; Schrenk, M.; Traub, P. C.; Vohringer, C. F.; Joos, T. O., Protein microarray technology. Trends. Biotechnol. 2002, 20, 160-166.
19. Fang, Y.; Frutos, A. G.; Lahiri, J., Membrane protein microarrays. J. Am. Chem. Soc. 2002, 124, 2394-2395.
20. Lin, P.-C.; Weinrich, D.; Waldmann, H., Protein Biochips: Oriented Surface Immobilization of Proteins. Macromol. Chem. Phys. 2010, 211, 136-144.
21. MacBeath, G.; Schreiber, S. L., Printing proteins as microarrays for high-throughput function determination. Science 2000, 289, 1760-1763.
22. Hlady, V. V.; Buijs, J., Protein adsorption on solid surfaces. Curr. Opin. Biotechnol. 1996, 7, 72-77.
23. Stillman, B. A.; Tonkinson, J. L., FAST slides: a novel surface for microarrays. Biotechniques 2000, 29, 630-635.
24. de Lange, V.; Binkert, A.; Voros, J.; Bally, M., Microarrays made easy: biofunctionalized hydrogel channels for rapid protein microarray production. ACS Appl. Mater. Interfaces 2011, 3, 50-57.
25. Marsden, D. M.; Nicholson, R. L.; Ladlow, M.; Spring, D. R., 3D small-molecule microarrays. Chem. Commun. 2009, 7107-7109.
26. Li, H.; Leulmi, R. F.; Juncker, D., Hydrogel droplet microarrays with trapped antibody-functionalized beads for multiplexed protein analysis. Lab Chip 2011, 11, 528-534.
27. Araujo, A. M.; Neves, M. T.; Azevedo, W. M.; Oliveira, G. G.; Ferreira, D. L.; Coelho, R. A. L.; Figueiredo, E. A. P.; Carvalho, L. B., Polyvinyl alcohol-glutaraldehyde network as a support for protein immobilisation. Biotechnol. Tech. 1997, 11, 67-70.
28. Zhou, Y.; Andersson, O.; Lindberg, P.; Liedberg, B., Protein Microarrays on Carboxymethylated Dextran Hydrogels: Immobilization, Characterization and Application. Microchimica Acta 2004, 147, 21-30.
29. Fernandez-Lafuente, R.; Rosell, C. M.; Rodriguez, V.; Santana, C.; Soler, G.; Bastida, A.; Guisan, J. M., Preparation of activated supports containing low pK amino groups. A new tool for protein immobilization via the carboxyl coupling method. Enzyme Microb. Technol. 1993, 15, 546-550.
30. Sano, S.; Kato, K.; Ikada, Y., Introduction of functional groups onto the surface of polyethylene for protein immobilization. Biomaterials 1993, 14, 817-822.
31. Kim, D.; Karns, K.; Tia, S. Q.; He, M.; Herr, A. E., Electrostatic Protein Immobilization Using Charged Polyacrylamide Gels and Cationic Detergent Microfluidic Western Blotting. Ana.l Chem. 2012, 84, 2533-2540.
32. Rubina, A. Y.; Kolchinsky, A.; Makarov, A. A.; Zasedatelev, A. S., Why 3-D? Gel-based microarrays in proteomics. Proteomics 2008, 8, 817-831.
33. Miseta, A.; Csutora, P., Relationship between the occurrence of cysteine in proteins and the complexity of organisms. Mol. Biol. Evol. 2000, 17, 1232-1239.
34. Cheung, C. L.; Camarero, J. A.; Woods, B. W.; Lin, T.; Johnson, J. E.; De Yoreo, J. J., Fabrication of assembled virus nanostructures on templates of chemoselective linkers formed by scanning probe nanolithography. J. Am. Chem. Soc. 2003, 125, 6848-6849.
35. Viitala, T.; Vikholm, I.; Peltonen, J., Protein Immobilization to a Partially Cross-Linked Organic Monolayer. Langmuir 2000, 16, 4953-4961.
36. Gauvreau, V.; Chevallier, P.; Vallieres, K.; Petitclerc, E.; Gaudreault, R. C.; Laroche, G., Engineering surfaces for bioconjugation: developing strategies and quantifying the extent of the reactions. Bioconjug. Chem. 2004, 15, 1146-1156.
37. Jongsma, M. A.; Litjens, R. H., Self-assembling protein arrays on DNA chips by auto-labeling fusion proteins with a single DNA address. Proteomics 2006, 6, 2650-2655.
38. van der Vlies, A. J.; O'Neil, C. P.; Hasegawa, U.; Hammond, N.; Hubbell, J. A., Synthesis of pyridyl disulfide-functionalized nanoparticles for conjugating thiol-containing small molecules, peptides, and proteins. Bioconjug. Chem. 2010, 21, 653-662.
39. Morpurgo, M.; Veronese, F. M.; Kachensky, D.; Harris, J. M., Preparation of characterization of poly(ethylene glycol) vinyl sulfone. Bioconjug. Chem. 1996, 7, 363-368.
40. Rizzi, S. C.; Hubbell, J. A., Recombinant protein-co-PEG networks as cell-adhesive and proteolytically degradable hydrogel matrixes. Part I: Development and physicochemical characteristics. Biomacromolecules 2005, 6, 1226-1238.
41. Morales-Sanfrutos, J.; Lopez-Jaramillo, J.; Ortega-Munoz, M.; Megia-Fernandez, A.; Perez-Balderas, F.; Hernandez-Mateo, F.; Santoyo-Gonzalez, F., Vinyl sulfone: a versatile function for simple bioconjugation and immobilization. Org. Biomol. Chem. 2010, 8, 667-675.
42. Mateo, C.; Abian, O.; Fernandez-Lorente, G.; Pedroche, J.; Fernandez-Lafuente, R.; Guisan, J. M.; Tam, A.; Daminati, M., Epoxy sepabeads: a novel epoxy support for stabilization of industrial enzymes via very intense multipoint covalent attachment. Biotechnol. Prog. 2002, 18, 629-634.
43. Fleming, S. A., Chemical Reagents in Photoaffinity Labeling. Tetrahedron 1995, 51, 12479.
44. Caelen, I.; Gao, H.; Sigrist, H., Protein Density Gradients on Surfaces. Langmuir 2002, 18, 2463-2467.
45. Sugawara, T.; Matsuda, T., Photochemical Protein Fixation on Polymer Surfaces via Derivatized Phenyl Azido Group. Langmuir 1995, 11, 2272-2276.
46. Moschallski, M.; Baader, J.; Prucker, O.; Ruhe, J., Printed protein microarrays on unmodified plastic substrates. Anal. Chim. Acta. 2010, 671, 92-98.
47. Houseman, B. T.; Huh, J. H.; Kron, S. J.; Mrksich, M., Peptide chips for the quantitative evaluation of protein kinase activity. Nat. Biotechnol. 2002, 20, 270-274.
48. de Araújo, A. D.; Palomo, J. M.; Cramer, J.; Köhn, M.; Schröder, H.; Wacker, R.; Niemeyer, C.; Alexandrov, K.; Waldmann, H., Diels–Alder Ligation and Surface Immobilization of Proteins. Angew. Chem. Int. Ed. 2006, 118, 302-307.
49. Tanaka, K.; Masuyama, T.; Hasegawa, K.; Tahara, T.; Mizuma, H.; Wada, Y.; Watanabe, Y.; Fukase, K., A submicrogram-scale protocol for biomolecule-based PET imaging by rapid 6pi-azaelectrocyclization: visualization of sialic acid dependent circulatory residence of glycoproteins. Angew. Chem. Int. Ed. 2008, 47, 102-105.
50. Blackman, M. L.; Royzen, M.; Fox, J. M., Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. J. Am. Chem. Soc. 2008, 130, 13518-13519.
51. Kalia, J.; Abbott, N. L.; Raines, R. T., General method for site-specific protein immobilization by Staudinger ligation. Bioconjug. Chem. 2007, 18, 1064-1069.
52. Soellner, M. B.; Dickson, K. A.; Nilsson, B. L.; Raines, R. T., Site-specific protein immobilization by Staudinger ligation. J. Am. Chem. Soc. 2003, 125, 11790-11791.
53. Watzke, A.; Kohn, M.; Gutierrez-Rodriguez, M.; Wacker, R.; Schroder, H.; Breinbauer, R.; Kuhlmann, J.; Alexandrov, K.; Niemeyer, C. M.; Goody, R. S.; Waldmann, H., Site-selective protein immobilization by Staudinger ligation. Angew. Chem. Int. Ed. 2006, 45, 1408-1412.
54. Best, M. D., Click chemistry and bioorthogonal reactions: unprecedented selectivity in the labeling of biological molecules. Biochemistry 2009, 48, 6571-6584.
55. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B., A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. Angew. Chem. Int. Ed. 2002, 41, 2596-2599.
56. Moses, J. E.; Moorhouse, A. D., The growing applications of click chemistry. Chem. Soc. Rev. 2007, 36, 1249-1262.
57. Wang, Q.; Chan, T. R.; Hilgraf, R.; Fokin, V. V.; Sharpless, K. B.; Finn, M. G., Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc. 2003, 125, 3192-3193.
58. Bryan, M. C.; Fazio, F.; Lee, H. K.; Huang, C. Y.; Chang, A.; Best, M. D.; Calarese, D. A.; Blixt, O.; Paulson, J. C.; Burton, D.; Wilson, I. A.; Wong, C. H., Covalent display of oligosaccharide arrays in microtiter plates. J. Am. Chem. Soc. 2004, 126, 8640-8641.
59. Speers, A. E.; Cravatt, B. F., Profiling enzyme activities in vivo using click chemistry methods. Chem. Biol. 2004, 11, 535-546.
60. Brennan, J. L.; Hatzakis, N. S.; Tshikhudo, T. R.; Dirvianskyte, N.; Razumas, V.; Patkar, S.; Vind, J.; Svendsen, A.; Nolte, R. J.; Rowan, A. E.; Brust, M., Bionanoconjugation via click chemistry: The creation of functional hybrids of lipases and gold nanoparticles. Bioconjug. Chem. 2006, 17, 1373-1375.
61. Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V., Polytriazoles as copper(I)-stabilizing ligands in catalysis. Org. Lett. 2004, 6, 2853-2855.
62. Hong, V.; Presolski, S. I.; Ma, C.; Finn, M. G., Analysis and optimization of copper-catalyzed azide-alkyne cycloaddition for bioconjugation. Angew. Chem. Int. Ed. 2009, 48, 9879-9883.
63. Soriano Del Amo, D.; Wang, W.; Jiang, H.; Besanceney, C.; Yan, A. C.; Levy, M.; Liu, Y.; Marlow, F. L.; Wu, P., Biocompatible copper(I) catalysts for in vivo imaging of glycans. J. Am. Chem. Soc. 2010, 132, 16893-16899.
64. Agard, N. J.; Prescher, J. A.; Bertozzi, C. R., A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 2004, 126, 15046-15047.
65. Baskin, J. M.; Prescher, J. A.; Laughlin, S. T.; Agard, N. J.; Chang, P. V.; Miller, I. A.; Lo, A.; Codelli, J. A.; Bertozzi, C. R., Copper-free click chemistry for dynamic in vivo imaging. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 16793-16797.
66. Laughlin, S. T.; Baskin, J. M.; Amacher, S. L.; Bertozzi, C. R., In vivo imaging of membrane-associated glycans in developing zebrafish. Science 2008, 320, 664-667.
67. Song, W.; Wang, Y.; Qu, J.; Madden, M. M.; Lin, Q., A photoinducible 1,3-dipolar cycloaddition reaction for rapid, selective modification of tetrazole-containing proteins. Angew. Chem. Int. Ed. 2008, 47, 2832-2835.
68. Song, W.; Wang, Y.; Qu, J.; Lin, Q., Selective functionalization of a genetically encoded alkene-containing protein via "photoclick chemistry" in bacterial cells. J. Am. Chem. Soc. 2008, 130, 9654-9655.
69. Xu, M. Q.; Evans, T. C., Jr., Intein-mediated ligation and cyclization of expressed proteins. Methods 2001, 24, 257-277.
70. Lesaicherre, M. L.; Uttamchandani, M.; Chen, G. Y.; Yao, S. Q., Developing site-specific immobilization strategies of peptides in a microarray. Bioorg. Med. Chem. Lett. 2002, 12, 2079-2083.
71. Helms, B.; van Baal, I.; Merkx, M.; Meijer, E. W., Site-specific protein and peptide immobilization on a biosensor surface by pulsed native chemical ligation. Chembiochem 2007, 8, 1790-1794.
72. Noren, C. J.; Wang, J.; Perler, F. B., Dissecting the Chemistry of Protein Splicing and Its Applications. Angew. Chem. Int. Ed. 2000, 39, 450-466.
73. Muralidharan, V.; Muir, T. W., Protein ligation: an enabling technology for the biophysical analysis of proteins. Nat. Methods 2006, 3, 429-438.
74. Evans, T. C., Jr.; Benner, J.; Xu, M. Q., The in vitro ligation of bacterially expressed proteins using an intein from Methanobacterium thermoautotrophicum. J. Biol. Chem. 1999, 274, 3923-3926.
75. Tolbert, T. J.; Wong, C.-H., Intein-Mediated Synthesis of Proteins Containing Carbohydrates and Other Molecular Probes. J. Am. Chem. Soc. 2000, 122, 5421-5428.
76. Lesaicherre, M. L.; Lue, R. Y.; Chen, G. Y.; Zhu, Q.; Yao, S. Q., Intein-mediated biotinylation of proteins and its application in a protein microarray. J. Am. Chem. Soc. 2002, 124, 8768-8769.
77. Girish, A.; Sun, H.; Yeo, D. S.; Chen, G. Y.; Chua, T. K.; Yao, S. Q., Site-specific immobilization of proteins in a microarray using intein-mediated protein splicing. Bioorg. Med. Chem. Lett. 2005, 15, 2447-2451.
78. Lin, P. C.; Ueng, S. H.; Tseng, M. C.; Ko, J. L.; Huang, K. T.; Yu, S. C.; Adak, A. K.; Chen, Y. J.; Lin, C. C., Site-specific protein modification through Cu(I)-catalyzed 1,2,3-triazole formation and its implementation in protein microarray fabrication. Angew. Chem. Int. Ed. 2006, 45, 4286-4290.
79. Lin, P. C.; Ueng, S. H.; Yu, S. C.; Jan, M. D.; Adak, A. K.; Yu, C. C.; Lin, C. C., Surface modification of magnetic nanoparticle via Cu(I)-catalyzed alkyne-azide [2 + 3] cycloaddition. Org. Lett. 2007, 9, 2131-2134.
80. Chen, M. L.; Adak, A. K.; Yeh, N. C.; Yang, W. B.; Chuang, Y. J.; Wong, C. H.; Hwang, K. C.; Hwu, J. R.; Hsieh, S. L.; Lin, C. C., Fabrication of an oriented Fc-fused lectin microarray through boronate formation. Angew. Chem. Int. Ed. 2008, 47, 8627-8630.
81. Lin, P. C.; Chen, S. H.; Wang, K. Y.; Chen, M. L.; Adak, A. K.; Hwu, J. R.; Chen, Y. J.; Lin, C. C., Fabrication of oriented antibody-conjugated magnetic nanoprobes and their immunoaffinity application. Anal. Chem. 2009, 81, 8774-8782.
82. Zhu, H.; Bilgin, M.; Bangham, R.; Hall, D.; Casamayor, A.; Bertone, P.; Lan, N.; Jansen, R.; Bidlingmaier, S.; Houfek, T.; Mitchell, T.; Miller, P.; Dean, R. A.; Gerstein, M.; Snyder, M., Global analysis of protein activities using proteome chips. Science 2001, 293, 2101-2105.
83. Wegner, G. J.; Lee, H. J.; Marriott, G.; Corn, R. M., Fabrication of histidine-tagged fusion protein arrays for surface plasmon resonance imaging studies of protein-protein and protein-DNA interactions. Anal. Chem. 2003, 75, 4740-4746.
84. Khan, F.; He, M.; Taussig, M. J., Double-hexahistidine tag with high-affinity binding for protein immobilization, purification, and detection on ni-nitrilotriacetic acid surfaces. Anal. Chem. 2006, 78, 3072-3079.
85. Steinhauer, C.; Wingren, C.; Khan, F.; He, M.; Taussig, M. J.; Borrebaeck, C. A., Improved affinity coupling for antibody microarrays: engineering of double-(His)6-tagged single framework recombinant antibody fragments. Proteomics 2006, 6, 4227-4234.
86. Holland-Nell, K.; Beck-Sickinger, A. G., Specifically immobilised aldo/keto reductase AKR1A1 shows a dramatic increase in activity relative to the randomly immobilised enzyme. Chembiochem 2007, 8, 1071-1076.
87. Boozer, C.; Ladd, J.; Chen, S.; Jiang, S., DNA-directed protein immobilization for simultaneous detection of multiple analytes by surface plasmon resonance biosensor. Anal. Chem. 2006, 78, 1515-1519.
88. Wacker, R.; Schroder, H.; Niemeyer, C. M., Performance of antibody microarrays fabricated by either DNA-directed immobilization, direct spotting, or streptavidin-biotin attachment: a comparative study. Anal. Biochem. 2004, 330, 281-287.
89. Kawahashi, Y.; Doi, N.; Takashima, H.; Tsuda, C.; Oishi, Y.; Oyama, R.; Yonezawa, M.; Miyamoto-Sato, E.; Yanagawa, H., In vitro protein microarrays for detecting protein-protein interactions: application of a new method for fluorescence labeling of proteins. Proteomics 2003, 3, 1236-1243.
90. Martzen, M. R.; McCraith, S. M.; Spinelli, S. L.; Torres, F. M.; Fields, S.; Grayhack, E. J.; Phizicky, E. M., A biochemical genomics approach for identifying genes by the activity of their products. Science 1999, 286, 1153-1155.
91. Ren, H.; Xiao, F.; Zhan, K.; Kim, Y.-P.; Xie, H.; Xia, Z.; Rao, J., A Biocompatible Condensation Reaction for the Labeling of Terminal Cysteine Residues on Proteins. Angew. Chem. Int. Ed. 2009, 121, 9838-9842.
92. E. H. White, F. M., G. F. Field, W. D. McElroy, The Structure and Synthesis of Firefly Luciferin. J. Am. Chem. Soc. 1961, 83, 2402-2403.
93. Takakura, H.; Kojima, R.; Urano, Y.; Terai, T.; Hanaoka, K.; Nagano, T., Aminoluciferins as functional bioluminogenic substrates of firefly luciferase. Chem. Asian. J. 2011, 6, 1800-1810.
94. Sun, X.; Zhao, Y.; Lin, V. S.; Slowing, II; Trewyn, B. G., Luciferase and luciferin co-immobilized mesoporous silica nanoparticle materials for intracellular biocatalysis. J. Am. Chem. Soc. 2011, 133, 18554-18557.
95. Shinde, R.; Perkins, J.; Contag, C. H., Luciferin derivatives for enhanced in vitro and in vivo bioluminescence assays. Biochemistry 2006, 45, 11103-11112.
96. Yeo, D. S.; Srinivasan, R.; Uttamchandani, M.; Chen, G. Y.; Zhu, Q.; Yao, S. Q., Cell-permeable small molecule probes for site-specific labeling of proteins. Chem. Commun. 2003, 2870-2871.
97. Chattopadhaya, S.; Srinivasan, R.; Yeo, D. S.; Chen, G. Y.; Yao, S. Q., Site-specific covalent labeling of proteins inside live cells using small molecule probes. Bioorg. Med. Chem. 2009, 17, 981-989.
98. Liang, G.; Ren, H.; Rao, J., A biocompatible condensation reaction for controlled assembly of nanostructures in living cells. Nature Chemistry 2009, 2, 54-60.
99. Ye, D.; Liang, G.; Ma, M. L.; Rao, J., Controlling Intracellular Macrocyclization for the Imaging of Protease Activity. Angew. Chem. Int. Ed. 2011, 2275-2279.
100. Liu, C. C.; Schultz, P. G., Adding New Chemistries to the Genetic Code. Annu. Rev. Biochem. 2010, 79, 413-444.
101. Davis, L.; Chin, J. W., Designer proteins: applications of genetic code expansion in cell biology. Nat. Rev. Mol. Cell. Biol. 2012, 13, 168-182.
102. Nguyen, D. P.; Elliott, T.; Holt, M.; Muir, T. W.; Chin, J. W., Genetically Encoded 1,2-Aminothiols Facilitate Rapid and Site-Specific Protein Labeling via a Bio-orthogonal Cyanobenzothiazole Condensation. J. Am. Chem. Soc. 2011, 133, 11418-11421.
103. Mctigue, M. A.; Williams, D. R.; Tainer, J. A., Crystal-Structures of a Schistosomal Drug and Vaccine Target - Glutathione-S-Transferase from Schistosoma-Japonica and Its Complex with the Leading Antischistosomal Drug Praziquantel. J. Mol. Biol. 1995, 246, 21-27.
104. Ziaco, B.; Pensato, S.; D’Andrea, L. D.; Benedetti, E.; Romanelli, A., Semisynthesis of Dimeric Proteins by Expressed Protein Ligation. Org. Lett. 2008, 10, 1955-1958.
105. Seipelt, J.; Guarne, A.; Bergmann, E.; James, M.; Sommergruber, W.; Fita, I.; Skern, T., The structures of picornaviral proteinases. Virus Res. 1999, 62, 159-168.
106. Smith, T. A.; Kohorn, B. D., Direct selection for sequences encoding proteases of known specificity. Proc. Natl. Acad. Sci. U. S. A. 1991, 88, 5159-5162.
107. Parks, T. D.; Leuther, K. K.; Howard, E. D.; Johnston, S. A.; Dougherty, W. G., Release of proteins and peptides from fusion proteins using a recombinant plant virus proteinase. Anal. Biochem. 1994, 216, 413-417.
108. Phan, J.; Zdanov, A.; Evdokimov, A. G.; Tropea, J. E.; Peters, H. K., 3rd; Kapust, R. B.; Li, M.; Wlodawer, A.; Waugh, D. S., Structural basis for the substrate specificity of tobacco etch virus protease. J. Biol. Chem. 2002, 277, 50564-50572.
109. Mohanty, A. K.; Simmons, C. R.; Wiener, M. C., Inhibition of tobacco etch virus protease activity by detergents. Protein Expr. Purif. 2003, 27, 109-114.
110. Carrington, J. C.; Dougherty, W. G., A viral cleavage site cassette: identification of amino acid sequences required for tobacco etch virus polyprotein processing. Proc. Natl. Acad. Sci. U. S. A. 1988, 85, 3391-3395.
111. Dougherty, W. G.; Parks, T. D., Post-translational processing of the tobacco etch virus 49-kDa small nuclear inclusion polyprotein: identification of an internal cleavage site and delimitation of VPg and proteinase domains. Virology 1991, 183, 449-456.
112. Dougherty, W. G.; Parks, T. D., Molecular genetic and biochemical evidence for the involvement of the heptapeptide cleavage sequence in determining the reaction profile at two tobacco etch virus cleavage sites in cell-free assays. Virology 1989, 172, 145-155.
113. Dougherty, W. G.; Cary, S. M.; Parks, T. D., Molecular genetic analysis of a plant virus polyprotein cleavage site: a model. Virology 1989, 171, 356-364.
114. Parks, T. D.; Howard, E. D.; Wolpert, T. J.; Arp, D. J.; Dougherty, W. G., Expression and purification of a recombinant tobacco etch virus NIa proteinase: biochemical analyses of the full-length and a naturally occurring truncated proteinase form. Virology 1995, 210, 194-201.
115. Kapust, R. B.; Tozser, J.; Fox, J. D.; Anderson, D. E.; Cherry, S.; Copeland, T. D.; Waugh, D. S., Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. Protein Eng. 2001, 14, 993-1000.
116. Kapust, R. B.; Tozser, J.; Copeland, T. D.; Waugh, D. S., The P1' specificity of tobacco etch virus protease. Biochem. Biophys. Res. Commun. 2002, 294, 949-955.
117. Tolbert, T. J.; Wong, C. H., New methods for proteomic research: preparation of proteins with N-terminal cysteines for labeling and conjugation. Angew. Chem. Int. Ed. 2002, 41, 2171-2174.
118. Esposito, D.; Chatterjee, D. K., Enhancement of soluble protein expression through the use of fusion tags. Curr. Opin. Biotechnol. 2006, 17, 353-358.
119. Shih, Y. P.; Wu, H. C.; Hu, S. M.; Wang, T. F.; Wang, A. H., Self-cleavage of fusion protein in vivo using TEV protease to yield native protein. Protein Sci. 2005, 14, 936-941.
120. Kusnezow, W.; Jacob, A.; Walijew, A.; Diehl, F.; Hoheisel, J. D., Antibody microarrays: an evaluation of production parameters. Proteomics 2003, 3, 254-264.
121. Yu, C.-C.; Lin, P.-C.; Lin, C.-C., Site-specific immobilization of CMP-sialic acid synthetase on magnetic nanoparticles and its use in the synthesis of CMP-sialic acid. Chem. Comm. 2008, 1308.
122. Yu, C. C.; Kuo, Y. Y.; Liang, C. F.; Chien, W. T.; Wu, H. T.; Chang, T. C.; Jan, F. D.; Lin, C. C., Site-specific immobilization of enzymes on magnetic nanoparticles and their use in organic synthesis. Bioconjug. Chem. 2012, 23, 714-724.
123. Nunn, C. M.; Jeeves, M.; Cliff, M. J.; Urquhart, G. T.; George, R. R.; Chao, L. H.; Tscuchia, Y.; Djordjevic, S., Crystal structure of tobacco etch virus protease shows the protein C terminus bound within the active site. J. Mol. Biol. 2005, 350, 145-155.
124. Eduardo Fernandez-Megia, J. C., Irene Rodrı´guez-Meizoso, Ricardo Riguera, A Click Approach to Unprotected Glycodendrimers. Macromolecules 2006, 39, 2113.
125. Itoh, Y.; Ishikawa, M.; Kitaguchi, R.; Sato, S.; Naito, M.; Hashimoto, Y., Development of target protein-selective degradation inducer for protein knockdown. Bioorg. Med. Chem. 2011, 19, 3229-3241.
126. Wong, L. S.; Janusz, S. J.; Sun, S.; Leggett, G. J.; Micklefield, J., Nanoscale biomolecular structures on self-assembled monolayers generated from modular pegylated disulfides. Chemistry 2010, 16, 12234-12243.