研究生: |
章豐帆 Feng-Fan Chang |
---|---|
論文名稱: |
熱極化熔融石英玻璃之二階非線性光學特性的衰減現象之探討 A study on the degradation of second order nonlinear optical characteristics of thermally poled fused quartz |
指導教授: |
趙煦
Shiuh Chao |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 123 |
中文關鍵詞: | 二階非線性 、熱極化 、熔融石英 、玻璃 、衰減 、非線性光學 |
外文關鍵詞: | second order nonlinearity, thermal poling, fused quartz, fused silica, glass, decay, degradation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
非線性光學在目前應用的範圍非常廣泛,包括電光調變、頻率轉換、光通訊應用之色散補償等。一般具二階非線性光學性質的物質如Quartz、LiNbO3、LiTaO3等等,都是晶體結構或是化學合成的高分子化合物。1991年R.A. Myers等發現將熔融石英平面基板加熱,並施加高電壓(熱極化法),成功地使中心對稱結構的熔融石英基板產生恆常性的二階非線性光學特性,使得價格便宜之熔融石英獲得更廣泛的應用。
本論文主要在探討熱極化熔融石英產生的二階非線性光學特性隨時間衰減之現象,目前其他研究熱極化之學者都尚未提出有關熱極化空白熔融石英後的衰減現象。用以實驗的熔融石英分別為屬於Type I製程的GE124與Type II製程的KV。GE124在大氣環境熱極化所得之二階非線性特性幾乎不衰減,但在真空環境熱極化後,會有明顯衰減現象。KV在大氣與真空環境熱極化後都有衰減現象,若在熱極化降溫後持續加高電壓一段時間,可以減緩衰減,而且熱極化後之樣品保存在低濕度的環境中,可以有效抑止衰減。衰減過程中二階非線性特性衰減,但非線性分佈深度不變。
對於大氣與真空環境下熱極化之比較,實驗結果為兩者所產生之二階非線性特性與非線性分佈深度大致相同。
[1] Bahaa E. A. Saleh and Malvin Carl Teich, “Fundamentals of photonics,” (A Wiley-Interscience publication, New York, 1991)
[2] Yi-Hsuan Lin, “Study of second order nonlinear optics characteristics induced by vacuum thermal poling on optical grade fused silica,” Master Dissertation, National Tsing Hua University (2003).
[3] N. Mukherjee, R. A. Myers, S. R. J. Brueck, “Dynamics of second-harmonic generation in fused silica,” J. Opt. Soc. Am. B, 11,665-669 (1994).
[4] T.G. Alley, “The formation of the second-order nonlinearity in thermally poled fused silica glass,” Ph. D. Dissertation, University of New Mexico (1998).
[5] T.G. Alley, S. R. J. Brueck, and R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242, 165-176 (1998).
[6] X. M. Liu, M. D. Zhang, “Theoretical study for thermal/electric field poling of fused silica,” Jpn. J. Appl. Phys. 40, 4069-4076 (2001).
[7] R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16, 1732-1734 (1991).
[8] O. Sugihara, M. Nakanishi, H. Fujimura, C. Egami, and N. Okamoto, “Thermally poled silicate thin films with large second-harmonic generation,” J. Opt. Soc. Am. B, 15, 421-425.
[9] V. Pruneri, F. Samoggia, G. Bonfrate, P. G. Kazansky, and G. M. Yang, “Thermal poling of silica in air and under vacuum: The influence of charge transport on second harmonic generation,” Appl. Phys. Lett. 74, 2423-2425 (1999).
[10] M.-X. Qiu, F. Pi, G. Orriols, and M. Bibiche,“Signal damping of second-harmonic generation in poled slda-lime silica glass,” J. Opt. Soc. Am. B, 15, 1362-1365 (1998).
[11] M.-X. Qiu, T. Mizunami, R. Vilaseca, F. Pi, and G. Orriols, “Bulk and near-surface second-order nonlinearities generated in a BK7 soft glass by thermal poling,” J. Opt. Soc. Am. B, 19, 37-42 (1998).
[12] I. Fanderlik, “Silica Glass and Its Application,” (Elsevier Science publishing, New York 1990).
[13] http://www.almazoptics.com/KV.htm
[14] Chun-Lin Lin, “Fabrication of Ge ion-implanted nonlinear optical planar waveguide and application on QPM-SHG,” Master Dissertation, National Tsing Hua University (2003).
[15] http://www.gequartz.com/en/tab11.htm
[16] Huai-Yi Chen, “A study on the optical nonlinearity of thermally poled planar fused silica plates and development of QPM SHG devices,” Ph. D. Dissertation, National Tsing Hua University (2003).
[17] Chien-Chou Chen, “Fabrication of P-doped SiO2 plaanar waveguide by PECVD and nonlinear optical properties study,” Master Dissertation, National Tsing Hua University (2003).
[18] Jin-Sheng Sue, “Quasi-phase matched second harmonic generation in periodically poled fused silica plate,” Master Dissertation, National Tsing Hua University (2002).