研究生: |
賴冠合 Lai, Guan-Ho |
---|---|
論文名稱: |
Eigenvalue Estimates on Minimal Submanifolds |
指導教授: |
宋瓊珠
Sung, Chiung-Jue |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 28 |
中文關鍵詞: | 特徵值 、極小子流形 、拉普拉斯–貝爾特拉米算子 、保角變換 、完備黎曼流形 |
外文關鍵詞: | Eigenvalue, Minimal Submanifold, Laplace–Beltrami operator, Conformal Map, Complete Riemannian Manifold |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
In this eport, we introduce several theorems about eigenvalues of the
Laplace-Beltrami operator on submanifolds in Euclidean spaces, especially indide a
sphere. We will give some sufficient and necessary conditions for a submanifold being minimal.
[1] R. Adams, Sobolev Spaces, Academic Press, Inc., 2003.
[2] I. Chavel, Eigenvalues in Riemannian Geometry, Academic Press, Inc., 1984, pp. 309–312.
[3] I. Chavel, Riemannian Geometry, A Modern Introduction, Cambridge University Press, 2006.
[4] M. do Carmo, Riemannian Geometry, translated by F. Flaherty, Birh‥auser Boston, 1992.
[5] J. Jost, Compact Riemann Surfaces, Springer, 2006.
[6] J. Jost, Riemannian Geometry and Geometric Analysis, Springer, 2008.
[7] R. C. McOwen, Partial Differential Equations, Pearson Education, Inc., 2003.
[8] T. Takahashi, Minimal Immersion of Riemannian Manifolds, J. Math. Soc. Japan 8 (1966), no. 4.
[9] P. Li and S. T Yau, A New Conformal Invariant and Its Applications to the Willmore Conjecture
and the First Eigenvalue of Compact Surfaces, Invent. Math. 69 (1982), 269–291
[10] R. Schoen and S. T. Yau, Lectures on Differential Geometry, International Press of Boston, 1994
[11] P. Yang and S. T. Yau, Eigenvalues of the Laplacian of compact Riemann surfaces and minimal
submanifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 7 (1980), no. 1, 55–63