簡易檢索 / 詳目顯示

研究生: 陳怡君
Yi-Jiun Chen
論文名稱: 植物中逆境相關蛋白質與基因的特性分析
Characterization of Stress-Related Proteins and Genes in Plants
指導教授: 林彩雲
Tsai-Yun Lin
口試委員:
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生命科學系
Department of Life Sciences
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 1冊
中文關鍵詞: 熱休克蛋白綠豆發育期甲基茉莉酸高氏柴胡組培根基因微矩陣
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 植物的生長和新陳代謝會受各種生物性和非生物性刺激的影響,包括微生物和昆蟲的攻擊以及溫度和生長素的影響。不同於動物,無法移動的植物需要更複雜和有效率的防禦系統來對抗不同的刺激。本論文著重於三個綠豆熱休克蛋白質的鑑定和高氏柴胡組培根中受甲基茉莉酸誘導基因的分析。
    生物常合成分子保護子來應對高溫、低溫、傷害、重金屬以及缺水等逆境。分子量是70 kDa的熱休克蛋白Hsp70以及同源的Hsc70在各種生物之間的相似度很高。此外,Hsp/Hsc70也可以在非逆境狀態下表現於特定的發育時期。本研究之第一部分,分離三個綠豆熱休克蛋白基因並鑑定其在發育期的基因和蛋白質層次的表現。我們的結果顯示這三個綠豆熱休克蛋白質可能是參與正常的生長與發育,在種子成熟或耐受乾燥較不重要。
    茉莉酸和甲基茉莉酸是廣泛存在的植物訊號分子,在調控新陳代謝的過程、繁殖、和防禦病蟲害與昆蟲中,扮演關鍵性的角色。本研究之第二部分,將甲基茉莉酸添加到高氏柴胡組培根,並研究受誘導基因間表現的資訊。我們的結果顯示茉莉酸有一種複雜的訊號網路,會牽涉大規模的轉錄重整。有些受甲基茉莉酸誘導的基因,具有農業、醫藥和食品工程應用的潛力。


    Plant growth and metabolism are affected by various biotic and abiotic stimuli including microorganisms and insects attack as well as temperatural and hormonal effects. Unlike animals, plants cannot move independently and need a more complicated and efficient defense system against different stimuli. This thesis focused on the identification of three VrHsc70 proteins in Vigna radiata and the analyses of methyl jasmonate (MeJA)-induced genes in Bupleurum kaoi adventitious roots.
    Organisms often synthesize molecular chaperons to cope with stress such as heat, cold, wounding, heavy metals, and water deficit. The 70 kDa heat shock protein (Hsp70) and the constitutively expressed heat shock cognate (Hsc70) are conserved among all organisms. In addition, Hsp/Hsc70s have been found to be upregulated at specific developmental stages in the absence of stress. In the first part of this study, three mungbean Hsc70 cDNAs were isolated and their developmental expressions were characterized at both transcriptional and protein levels. Our results indicate that these three VrHsc70s may not be important in seed maturation or desiccation tolerance, but probably involved in normal growth and development.
    Jasmonic acid (JA) and MeJA are ubiquitous plant signaling compounds that play a key role in the regulation of metabolic processes, reproduction, and defense against pathogens and insects. In the second part of this study, MeJA was applied to adventitious root culture of B. kaoi and the expression profiles of induced genes were investigated. Our results indicate that MeJA has a complex signaling network involving a large-scale transcriptional reprogramming. Some of the MeJA-induced genes may have applications in agricultural, medicinal and food industries.

    摘要---------------------------------------------------------------------------------------------------i Abstract----------------------------------------------------------------------------------------------ii 謝誌--------------------------------------------------------------------------------------------------iv Table of Contents-----------------------------------------------------------------------------------v List of Tables-------------------------------------------------------------------------------------viii List of Figures--------------------------------------------------------------------------------------ix Abbreviations---------------------------------------------------------------------------------------x Part I: Developmental Expression and Sequence Identification of Mungbean Hsc70s--------------------------------------------------------------------------------------1 1. Abstract-----------------------------------------------------------------------------------------2 2. Introduction------------------------------------------------------------------------------------3 3. Materials and methods 3.1 Plant materials and growth conditions-----------------------------------------------5 3.2 Isolation and sequencing of Hsc70 cDNAs from a cDNA library of mungbean seedlings---------------------------------------------------------------------------------5 3.3 RNase protection assays---------------------------------------------------------------6 3.4 Purification and peptide analysis of Hsc70 isoforms in mungbean seedlings--7 3.5 Western blotting analysis of cytosolic Hsc70s in mungbean---------------------8 4. Results and discussion 4.1 Isolation of three mungbean VrHsc70 cDNAs------------------------------------10 4.2 VrHsc70 transcript profiles in mungbean at different developmental stages------------------------------------------------------------------------------------11 4.3 Identification of the three VrHsc70 proteins using peptide mass fingerprinting--------------------------------------------------------------------------12 4.4 Cytosolic VrHsc70 proteins at different developmental stages-----------------12 5. References------------------------------------------------------------------------------------15 6. Tables and figures----------------------------------------------------------------------------18 Part II: MeJA-Induced Transcriptional Changes in Adventitious Roots of Bupleurum kaoi-------------------------------------------------------------------------29 1. Abstract---------------------------------------------------------------------------------------30 2. Introduction-----------------------------------------------------------------------------------31 3. Materials and methods 3.1 Plant growth and treatment----------------------------------------------------------33 3.2 Total cellular RNA extraction-------------------------------------------------------33 3.3 Preparation of PCR-select cDNA subtraction library and DNA sequencing--34 3.4 DNA analysis--------------------------------------------------------------------------35 3.5 DNA microarray fabrication and hybridization-----------------------------------36 3.6 Analysis of microarray data---------------------------------------------------------37 3.7 Relative quantification real-time PCR (qRT-PCR)-------------------------------37 4. Results and discussion 4.1 MeJA retarded adventitious root growth-------------------------------------------39 4.2 PCR-select cDNA subtraction library construction, sequencing and analysis---------------------------------------------------------------------------------39 4.3 Gene expression profiling of MeJA-treated B. kaoi adventitious roots--------39 4.4 Verification of microarray data with qRT-PCR-----------------------------------42 5. References-------------------------------------------------------------------------------------48 6. Tables and figures----------------------------------------------------------------------------53 Appendix------------------------------------------------------------------------------------------75 (1). Protein samples of equal amount from floral bud, flower, pod and dry seed were loaded on 10% SDS-PAGE with Coomassie staining. (2). BkActin was used as an endogenous control gene in qRT-PCR. (3). Paper published: Developmental Expression of Three Mungbean Hsc70s and Substrate-binding Specificity of the Encoded Proteins (4). Paper published: Temperature effects on systemic endoreduplication in orchid during floral development (5). Paper in press: MeJA-Induced Transcriptional Changes in Adventitious Roots of Bupleurum kaoi

    Aoki, K., Kragler, F., Xoconostle-Cázares, B. and Lucas, W. J. A subclass of plant heat shock cognate 70 chaperones carries a motif that facilitates trafficking through plasmodesmata. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 16342-16347.
    Chang, S., Puryear, J. and Cairney, J. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. 1993, 11, 693-699.
    Chen, Y. J., Wu, M. F., Yu, Y. H., Tam, M. F. and Lin, T. Y. Developmental expression of three mungbean Hsc70s and substrate-binding specificity of the encoded proteins. Plant Cell Physiol. 2004, 45, 1603-1614.
    DeRocher, A. and Vierling, E. Cytoplasmic HSP70 homologues of pea: differential expression in vegetative and embryonic organs. Plant Mol. Biol. 1995, 27, 441-456.
    Duck, N. B. and Folk, W. R. Hsp70 heat shock protein cognate is expressed and stored in developing tomato pollen. Plant Mol. Biol. 1994, 26, 1031-1039.
    Flaherty, K. M., McKay, D. B., Kabsch, W. and Holmes, K. C. Similarity of the three-dimensional structures of actin and the ATPase fragment of a 70-kDa heat shock cognate protein. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 5041-5045.
    Freeman, B. C., Myers, M. P., Schumacher, R. and Morimoto, R. I. Identification of a regulatory motif in Hsp70 that affects ATPase activity, substrate binding and interaction with HDJ-1. EMBO J. 1995, 14, 2281-2292.
    Guy, C. L. and Li, Q. B. The organization and evolution of the spinach stress 70 molecular chaperone gene family. Plant Cell 1998, 10, 539-556.
    Hartl, F. U. Molecular chaperones in cellular protein folding. Nature 1996, 381, 571-579.
    Höhfeld, J., Minami, Y. and Hartl, F. U. Hip, a novel cochaperone involved in the eukaryotic Hsc70/Hsp40 reaction cycle. Cell 1995, 83, 589-598.
    Hopf, N., Plesofsky-Vig, N. and Brambl, R. The heat shock response of pollen and other tissues of maize. Plant Mol. Biol. 1992, 19, 623-630.
    Johnson, J. L. and Craig, E. A. Protein folding in vivo: unraveling complex pathways. Cell 1997, 90, 201-204.
    Karlin, S. and Brocchieri, L. Heat shock protein 70 family: multiple sequence comparisons, function and evolution. J. Mol. Evol. 1998, 47, 565-577.
    Lin, T. Y., Duck, N. B., Winter, J. and Folk, W. R. Sequences of two hsc70 cDNAs from Lycopersicon esculentum. Plant Mol. Biol. 1991, 16, 475-478.
    Malik, I. A. Mungbean breeding. Lecture handout of the 14th Regional Training Course in Vegetable Production and Research, 15 October-15 March 1996. Kasetsart University, Kamphaeng Saen, Nakhon Pathom, Thailand: ARC-AVRDC. pp 1-7.
    Martínez-García, J. F., Monte, E. and Quail, P. H. A simple, rapid and quantitative method for preparing Arabidopsis protein extracts for immunoblot analysis. Plant J. 1999, 20, 251-257.
    Mayer, M. P. and Bukau, B. Hsp70 chaperone systems: diversity of cellular functions and mechanism of action. Biol. Chem. 1998, 379, 261-268.
    Morimoto, R. I. Cells in stress: transcriptional activation of heat shock genes. Science 1993, 259, 1409-1410.
    Poehlman, J. M. The Mungbean. Oxford and IBH Publishing Co., New Delhi, 1991; pp 375.
    Pratt, W. B., Krishna, P. and Olsen, L. J. Hsp90-binding immunophilins in plants: the protein movers. Trends Plant Sci. 2001, 6, 54-58.
    Rippmann, F., Taylor, W. R., Rothbard, J. B. and Green, N. M. A hypothetical model for the peptide binding domain of hsp70 based on the peptide binding domain of HLA. EMBO J. 1991, 10, 1053-1059.
    Sambrook, J. and Russell, D. W. Molecular Cloning: A Laboratory Manual, Ed3. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY., 2001.
    Shevchenko, A., Wilm, M., Vorm, O. and Mann, M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 1996, 68, 850-858.
    Sung, D. Y., Vierling, E. and Guy, C. L. Comprehensive expression profile analysis of the Arabidopsis Hsp70 gene family. Plant Physiol. 2001, 126, 789-800.
    Wang, C. and Lin, B. L. The disappearance of an hsc70 species in mung bean seed during germination: purification and characterization of the protein. Plant Mol. Biol. 1993, 21, 317-329.
    Yan, J. X., Wait, R., Berkelman, T., Harry, R. A., Westbrook, J. A., Wheeler, C. H. and Dunn, M. J. A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis 2000, 21, 3666-3672.
    5. References
    Aoyagi, H., Kobayashi, Y., Yamada, K., Yokoyama, M., Kusakari, K. and Tanaka, H. Efficient production of saikosaponins in Bupleurum falcatum root fragments combined with signal transducers. Appl. Microbiol. Biotechnol. 2001, 57, 482-488.
    Arimura, G., Ozawa, R., Shimoda, T., Nishioka, T., Boland, W. and Takabayashi, J. Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 2000, 406, 512-515.
    Chang, S., Puryear, J. and Cairney, J. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. 1993, 11, 693-699.
    Chen, W., Provart, N. J., Glazebrook, J., Katagiri, F., Chang, H. S., Eulgem, T., Mauch, F., Luan, S., Zou, G., Whitham, S. A., Budworth, P. R., Tao, Y., Xie, Z., Chen, X., Lam, S., Kreps, J. A., Harper, J. F., Si-Ammour, A., Mauch-Mani, B., Heinlein, M., Kobayashi, K., Hohn, T., Dangl, J. L., Wang, X. and Zhu, T. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 2002, 14, 559-574.
    Cheong, J. J. and Choi, Y. D. Methyl jasmonate as a vital substance in plants. Trends Genet. 2003, 19, 409-413.
    Chiang, L. C., Ng, L. T., Liu, L. T., Shieh, D. E. and Lin, C. C. Cytotoxicity and anti-hepatitis B virus activities of saikosaponins from Bupleurum species. Planta Med. 2003, 69, 705-709.
    Choi, D. W., Jung, J., Ha, Y. I., Park, H. W., In, D. S., Chung, H. J. and Liu, J. R. Analysis of transcripts in methyl jasmonate-treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabolites. Plant Cell Rep. 2005, 23, 557-566.
    Creelman, R. A. anad Mullet, J. E. Biosynthesis and action of jasmonates in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1997, 48, 355-381.
    Devoto, A. and Turner, J. G. Regulation of jasmonate-mediated plant responses in Arabidopsis. Ann. Bot. (Lond) 2003, 92, 329-337.
    Gamborg, O. L., Miller, R. A. and Ojima, K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 1968, 50, 151-158.
    Grossmann, K., Rosenthal, C. and Kwiatkowski, J. Increases in jasmonic acid caused by indole-3-acetic acid and auxin herbicides in cleavers (Galium aparine). J. Plant Physiol. 2004, 161, 809-814.
    Gundlach, H., Muller, M. J., Kutchan, T. M. and Zenk, M. H. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 2389-2393.
    He, Y., Fukushige, H., Hildebrand, D. F. and Gan, S. Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol. 2002, 128, 876-884.
    Jena, S. and Choudhuri, M. A. Glycolate metabolism of three submerged aqutatic angiosperms during aging. Aquat. Bot. 1981, 12, 345-354.
    Jennifer, L. N., Fangxin, H. and Joanne, C. Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 2006, 126, 467-475.
    Kim, J. Y., Park, S. C., Kim, M. H., Lim, H. T., Park, Y. and Hahm, K. S. Antimicrobial activity studies on a trypsin-chymotrypsin protease inhibitor obtained from potato. Biochem. Biophys. Res. Commun. 2005, 330, 921-927.
    Lin, W. Y. Identification of three Bupleurum species through a rapid detection method using the sequence-specific oligonucleotide within ribosomal DNA internal transcribed spacer as probe. Master Dissertation, National Tsing Hua University, Hsinchu, Taiwan, R.O.C., 2004.
    Livak, K. J. and Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-□□CT method. Methods 2001, 25, 402-408.
    Lorenzo, O., Piqueras, R., Sanchez-Serrano, J. J. and Solano, R. Ethylene response factor1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 2003, 15, 165-178.
    Lorenzo, O. and Solano, R. Molecular players regulating the jasmonate signalling network. Curr. Opin. Plant Biol. 2005, 8, 532-540.
    Maccarrone, M., Melino, G. and Finazzi-Agro, A. Lipoxygenases and their involvement in programmed cell death. Cell Death Differ. 2001, 8, 776-784.
    Marrs, K. A. The functions and regulation of glutathione s-transferases in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1996, 47, 127-158.
    Melan, M. A., Dong, X., Endara, M. E., Davis, K. R., Ausubel, F. M. and Peterman, T. K. An Arabidopsis thaliana lipoxygenase gene can be induced by pathogens, abscisic acid, and methyl jasmonate. Plant Physiol. 1993, 101, 441-450.
    Meuriot, F., Noquet, C., Avice, J. C., Volenec, J. J., Cunningham, S. M., Sors, T. G., Caillot, S. and Ourry, A. Methyl jasmonate alters N partitioning, N reserves accumulation and induces gene expression of a 32-kDa vegetative storage protein that possesses chitinase activity in Medicago sativa taproots. Physiol. Plant. 2004, 120, 113-123.
    Navarro, P., Giner, R. M., Recio, M. C., Manez, S., Cerda-Nicolas, M. and Rios, J. L. In vivo anti-inflammatory activity of saponins from Bupleurum rotundifolium. Life Sci. 2001, 68, 1199-1206.
    O'Donnell, P. J., Calvert, C., Atzorn, R., Wasternack, C., Leyser, H. M. O. and Bowles, D. J. Ethylene as a signal mediating the wound response of tomato plants. Science 1996, 274, 1914-1917.
    Penninckx, I. A., Thomma, B. P., Buchala, A., Metraux, J. P. and Broekaert, W. F. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 1998, 10, 2103-2113.
    Rossato, L., MacDuff, J. H., Laine, P., Le Deunff, E. and Ourry, A. Nitrogen storage and remobilization in Brassica napus L. during the growth cycle: effects of methyl jasmonate on nitrate uptake, senescence, growth, and VSP accumulation. J. Exp. Bot. 2002, 53, 1131-1141.
    Roxas, V. P., Lodhi, S. A., Garrett, D. K., Mahan, J. R. and Allen, R. D. Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant Cell Physiol. 2000, 41, 1229-1234.
    Salzman, R. A., Brady, J. A., Finlayson, S. A., Buchanan, C. D., Summer, E. J., Sun, F., Klein, P. E., Klein, R. R., Pratt, L. H., Cordonnier-Pratt, M. M. and Mullet, J. E. Transcriptional profiling of sorghum induced by methyl jasmonate, salicylic acid, and aminocyclopropane carboxylic acid reveals cooperative regulation and novel gene responses. Plant Physiol. 2005, 138, 352-368.
    Sasaki, Y., Asamizu, E., Shibata, D., Nakamura, Y., Kaneko, T., Awai, K., Amagai, M., Kuwata, C., Tsugane, T., Masuda, T., Shimada, H., Takamiya, K., Ohta, H. and Tabata, S. Monitoring of methyl jasmonate-responsive genes in Arabidopsis by cDNA macroarray: self-activation of jasmonic acid biosynthesis and crosstalk with other phytohormone signaling pathways. DNA Res. 2001, 8, 153-161.
    Sasaki-Sekimoto, Y., Taki, N., Obayashi, T., Aono, M., Matsumoto, F., Sakurai, N., Suzuki, H., Hirai, M. Y., Noji, M., Saito, K., Masuda, T., Takamiya, K., Shibata, D. and Ohta, H. Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in Arabidopsis. Plant J. 2005, 44, 653-668.
    Schaller, F., Biesgen, C., Mussig, C., Altmann, T. and Weiler, E. W. 12-Oxophytodienoate reductase 3 (OPR3) is the isoenzyme involved in jasmonate biosynthesis. Planta 2000, 210, 979-984.
    Staswick, P. E., Su, W. and Howell, S. H. Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 6837-6840.
    Suzuki, H., Reddy, M. S., Naoumkina, M., Aziz, N., May, G. D., Huhman, D. V., Sumner, L. W., Blount, J. W., Mendes, P. and Dixon, R. A. Methyl jasmonate and yeast elicitor induce differential transcriptional and metabolic re-programming in cell suspension cultures of the model legume Medicago truncatula. Planta 2005, 220, 696-707.
    van der Fits, L. and Memelink, J. ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 2000, 289, 295-297.
    Vergnolle, C., Vaultier, M. N., Taconnat, L., Renou, J. P., Kader, J. C., Zachowski, A. and Ruelland, E. The cold-induced early activation of phospholipase C and D pathways determines the response of two distinct clusters of genes in Arabidopsis cell suspensions. Plant Physiol. 2005, 139, 1217-1233.
    Verpoorte, R. and Memelink, J. Engineering secondary metabolite production in plants. Curr. Opin. Biotechnol. 2002, 13, 181-187.
    Wasternack, C. and Parthier, B. Jasmonate signalled plant gene expression. Trends Plant Sci. 1997, 2, 302-307.
    Whittaker, D. J., Smith, G. S. and Gardner, R. C. Expression of ethylene biosynthetic genes in Actinidia chinensis fruit. Plant Mol. Biol. 1997, 34, 45-55.
    Xu, L., Liu, F., Lechner, E., Genschik, P., Crosby, W. L., Ma, H., Peng, W., Huang, D. and Xie, D. The SCFCOI1 ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 2002, 14, 1919-1935.
    Xu, Y., Chang, P. F. L., Liu, D., Narasimhan, M. L., Raghothama, K. G., Hasegawa, P. M. and Bressan, R. A. Plant defense genes are synergistically induced by ethylene and methyl jasmonate. Plant Cell 1994, 6, 1077-1085.
    Xu, Y., Zhu, Q., Panbangred, W., Shirasu, K. and Lamb, C. Regulation, expression and function of a new basic chitinase gene in rice (Oryza sativa L.). Plant Mol. Biol. 1996, 30, 387-401.
    Zhang, H., Huang, Z., Xie, B., Chen, Q., Tian, X., Zhang, X., Zhang, H., Lu, X., Huang, D. and Huang, R. The ethylene-, jasmonate-, abscisic acid- and NaCl-responsive tomato transcription factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco. Planta 2004, 220, 262-270.
    Zhu, C., Gan, L., Shen, Z. and Xia, K. Interactions between jasmonates and ethylene in the regulation of root hair development in Arabidopsis. J. Exp. Bot. 2006, 57, 1299-1308.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE