簡易檢索 / 詳目顯示

研究生: 許宏彰
Hsu, Hung-Chang
論文名稱: 生成金屬鈦矽化物奈米結構之研究
Investigation of the formation of titanium silicide nanostructures on silicon
指導教授: 陳力俊
Chen, Lih-Juann
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 125
中文關鍵詞: 矽化物奈米線掃瞄穿隧式電子顯微鏡臨場觀測穿透式電子顯微鏡
外文關鍵詞: silicide, nanowire, STM, in situ TEM
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來一維奈米結構受到很多研究人員的注意,主要是因為其特殊的性質以及將來可能在微電子與光電元件方面的應用。本研究利用掃瞄穿隧式電子顯微鏡(STM)、原子力顯微鏡(AFM)、穿透式電子顯微鏡(TEM)以及臨場超高真空穿透式電子顯微鏡(in situ UHV-TEM)研究金屬鈦矽化物在矽基材上的奈米結構與成長機制。
    在Si(111)基材上,當基材溫度為600~700度時,鈦矽化物會生成C49-TiSi2結晶相的奈米線與微粒兩種奈米結構,而當基材溫度升高至800度時,鈦矽化物會轉變成微粒結構。這些鈦矽化物奈米線在矽基材上沿著Si<2-20>方向成長,並且存在著C49-TiSi2(200)//Si(2-20)的晶面關係。
    藉由in situ UHV-TEM的觀察,進一步瞭解鈦矽化物奈米線在Si(111)基材上的相互作用模式。當奈米線在相同方向成長並接觸時,最後會結合在一起;但若奈米線在不同方向成長並接觸時,則會產生奈米線相互併吞或收縮的結果。根據此觀察結果,利用某些特殊基材,例如Si(110),可成長單一方向且高長寬比( high aspect ratio)的鈦矽化物奈米線。
    在Si(110)基材上,C49-TiSi2結晶相奈米線的尺寸與密度會受到基材溫度、鍍膜速率以及鍍膜時間的影響,因此藉由調整這些參數,可進一步控制奈米線的尺寸與長寬比。此外,經由計算奈米線密度與基材溫度之間的關係式,鈦矽化物奈米線的生成活化能約為0.75 eV。
    鈦矽化物在Si(001)基材上,當基材溫度為600度時,會生成微粒結構,而當基材溫度升高至700度時,則會生成O-Ti5Si4結晶相奈米線結構並沿著兩個互相垂直的Si<220>方向排列,這些奈米線的生成是由於長軸方向與短軸方向上不對稱的晶格匹配程度所造成。


    The growth mechanism and morphology of titanium silicide nanostructures on Si substrate have been investigated by scanning tunneling microscope (STM), atomic force microscope (AFM), transmission electron microscope (TEM), and in situ ultrahigh-vacuum TEM (UHV-TEM).
    The growth of titanium silicide was investigated in sub-monolayer Ti deposited on Si(111). The formation of nanowire (NW) and cluster structures was observed for 600 and 700 °C deposited samples. In sample heated to 800 °C, titanium silicide structures transformed to clusters. C49-TiSi2 NWs were found to orient along three equivalent Si <2-20> directions with C49-TiSi2(200)//Si(2-20). Deposition of sub-monolayer Ti at a high temperature was found to contribute to the lowering of the formation temperature of C49-TiSi2. The lowering of C49-TiSi2 growth temperature on heated substrate is attributed to smaller lattice mismatch between C49-TiSi2(200) and Si(2-20).
    Understanding the growth mechanism of NWs is essential for their successful implementation in advanced devices applications. In situ UHV-TEM has been applied to elucidate the interaction mechanisms of TiSi2 NWs on Si(111) substrate. Two phenomena were observed: merging of the two NWs in the same direction, and collapse of one NW on a competing NW in different directions when they meet at the ends. On the other hand, as one NW encounters the midsection of the other NW in different direction, it receded in favor of the bulging of the other NW at the midsection. The crucial information has been fruitfully exploited to grow long and high-aspect-ratio titanium silicide NWs on Si(110) since the NWs grow only in the [2-20] direction.
    The formation of titanium silicide NWs was investigated on Si(110) samples at 600-700 °C. From STM and AFM observation, the average length and aspect ratio of NWs increased with substrate temperatures. These NWs were oriented along one Si(2-20) direction with C49-TiSi2(200)//Si(2-20). The density of NWs is dependent of substrate temperatures and the activation energy E* for titanium silicide NW growth is 0.75 ± 0.1 eV. The growth of titanium silicide NWs was found to be significantly affected by the deposition rate and growth time.
    The self-assembled titanium silicide NWs on Si(001) substrate were investigated. Titanium silicides in the 600 °C deposited sample are of islands nanostructure and form NW shape in the 700 °C deposited sample. These titanium silicide NWs are aligned in two perpendicular <220> directions of Si substrate with large aspect ratio. From the analysis of TEM, the NWs were identified to be of O-Ti5Si4 phase with the epitaxial relationships of O-Ti5Si4[400]//Si[220] and O-Ti5Si4(034)//Si(001) and resulted from the anisotropic lattice mismatches that is good in the long axis and poor in the short axis of the NW.

    Contents I Acknowledgments V Abstract VII List of Abbreviations and Acronyms XI Chapter 1 Introduction 1.1 An Overview of Nanotechnology 1 1.2 Nanostructures 3 1.2.1 Zero-Dimensional (0D) Nanostructures 4 1.2.2 One-Dimensional (1D) Nanostructures 5 1.3 Metal Silicides 8 1.4 Titanium Silicides 9 1.5 Metal Silicide Nanowires 11 1.6 Si(111)-7×7 Surface 13 1.7 Scope and Aim of the Thesis 15 Chapter 2 Experimental Procedures 2.1 Introduction 16 2.2 Scanning Tunneling Microscope (STM) 16 2.2.1 STM System 17 2.2.2 Tip Preparation 18 2.2.3 Electron-Beam Evaporator System 18 2.2.4 Sample Preparation 19 2.2.5 Deposition and Annealing 19 2.3 Atomic Force Microscope (AFM) 20 2.4 Transmission Electron Microscope (TEM) 20 2.4.1 Sample Preparation 21 2.4.2 Transmission Electron Microscope Observation 22 2.5 In Situ Ultrahigh-Vacuum Transmission Electron Microscope (UHV-TEM) 23 2.5.1 Sample Preparation 23 2.5.2 In Situ Ultrahigh-Vacuum Transmission Electron Microscope Observation 23 Chapter 3 Effects of Substrate Temperature on the Initial Growth of Titanium Silicides on Si(111) 3.1 Motivation 25 3.2 Experimental Procedures 25 3.3 Results and Discussion 26 3.4 Conclusions 30 Chapter 4 Interaction Modes of Titanium Silicide Nanowires on Silicon 4.1 Motivation 31 4.2 Experimental Procedures 33 4.3 Results and Discussion 34 4.4 Conclusions 39 Chapter 5 Growth of Epitaxial Titanium Silicide Nanowire Arrays in a Single Direction on Si(110) 5.1 Motivation 41 5.2 Experimental Procedures 42 5.3 Results and Discussion 43 5.4 Conclusions 46 Chapter 6 Investigation of Self-Assembled Titanium Silicide Nanowires on Si(001) 6.1 Motivation 47 6.2 Experimental Procedures 48 6.3 Results and Discussion 48 6.4 Conclusions 51 Chapter 7 Summary and Conclusions 7.1 Effects of Substrate Temperature on the Initial Growth of Titanium Silicides on Si(111) 52 7.2 Interaction Modes of Titanium Silicide Nanowires on Silicon 52 7.3 Growth of Parallel Epitaxial Titanium Silicide Nanowire Arrays on Si(110) 53 7.4 Investigation of Self-Assembled Titanium Silicide Nanowires on Si(001) 53 Chapter 8 Future Prospects 8.1 Self-Organized Growth of Nanostructure Arrays on Strain-Relief Patterns 55 8.2 Growth of Well-Aligned Nanostructures on Individual Titanium Silicide Islands in Self-Organized Titanium Silicide Networks 56 8.3 In Situ Observation of Phase Formation of Titanium Silicide Nanowires 56 References 58 Tables 77 Figure Captions 78 Figures 83 Publications List 122 Curriculum Vitae 125

    Chapter 1
    1.1 A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science 271, 933-937 (1996).
    1.2 C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies,” Annu. Rev. Mater. Sci. 30, 545-610 (2000).
    1.3 J. M. Krans, J. M. van Rutenbeek, V. V. Fisun, I. K. Yanson, and L. J. de Jongh, “The signature of conductance quantization in metallic point contacts,” Nature 375, 767-769 (1995).
    1.4 K. K. Likharev and T. Claeson, “Single electronics,” Sci. Am. 266, 80-85 (1992).
    1.5 G. Markovich, G. P. Collier, S. E. Henrichs, F. Remacle, R. D. Levine, and J. R. Heath, “Architectonic quantum dot solids,” Acc. Chem. Res. 32, 415-423 (1999).
    1.6 M. Narihiro, G. Yusa, Y. Nakamura, T Noda, and H. Sakaki, “Resonant tunneling of electrons via 20 nm scale InAs quantum dot and magnetotunneling spectroscopy of its electronic states,” Appl. Phys. Lett. 70, 105-107 (1996).
    1.7 J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, “Large on-off ratios and negative differential resistance in a molecular electronic device,” Science 286, 1550-1552 (1999).
    1.8 C. Papadopoulos, A. Rakitin, J. Li, A. S. Vedeneev, and J. M. Xu, “Electronic transport in Y-junction carbon nanotubes,” Phys. Rev. Lett. 85, 3476-3479 (2000).
    1.9 M. T. Björk, B. J. Ohlsson, C. Thelander, A. I. Persson, K. Deppert, L. R. Wallenberg, and L. Samuelson, “Nanowire resonant tunneling diodes,” Appl. Phys. Lett. 81, 4458-4460 (2002).
    1.10 R. W. Siegel, E. Hu, and M. C. Roco, “Nanostructure science and technology,” (Kluwer Academic Publishers, Boston, 1999), pp. 1-362.
    1.11 J. D. Meindl Q. Chen, and J. A. Davis, “Limits on silicon nanoelectronics for terascale integration,” Science 293, 2044-2049 (2001).
    1.12 C. M. Lieber, “The incredible shrinking circuit,” Sci. Am. 285, 58-65 (2001).
    1.13 V. Balzani, A. Credi, and M. Venturi, “The bottom-up approach to molecular-level devices and machines,” Chem. Eur. J. 8, 5524-5532 (2002).
    1.14 K. E. Drexler, “Engines of creation,” (Anchor Press, New York, 1986).
    1.15 K. E. Drexler, “Machine-phase nanotechnology,” Sci. Am. 285, 74-75 (2001)
    1.16 C. Joachim, J. K. Gimzewski, and A. Aviram, “Electronics using hybrid-molecular and mono-molecular devices,” Nature 408, 541-548 (2000).
    1.17 C. P. Collier, G. Mattersteig, E. W. Wong, Y. Luo, K. Beverly, J. Sampaio, F. M. Raymo, J. F. Stoddart, and J. R. Heath, “A [2]catenane-based solid state electronically reconfigurable switch,” Science 289, 1172-1175 (2000).
    1.18 M. A. Reed, J. Chen, A. M. Rawlett, D. W. Price, and J. M. Tour, “Molecular random access memory cell,” Appl. Phys. Lett. 78, 3735-3737 (2001).
    1.19 D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos, and P. L. McEuen, “A single-electron transistor made from a cadmium selenide nanocrystal,” Nature 389, 699-701 (1997).
    1.20 M. H. Devoret and R. J. Schoelkopf, “Amplifying quantum signals with the ingle-electron transistor,” Nature 406, 1039-1047 (2000).
    1.21 A. Sengupta and J. Z. Zhang, “Handbook of nanophase and nanostructured materials: materials systems and applications I,” edited by Z. L. Wang, Y. Liu, and Z. Zhang (Kluwer Academic/ Plenum Publishers, New York, 2003), 3, pp. 85-86.
    1.22 S. Iijima, “Helical microtube of graphitic carbon,” Nature 354, 56-58 (1991).
    1.23 C. Dekker, “Carbon nanotubes as molecular quantum wires,” Phys. Today 52, 22-28 (1999).
    1.24 Y. Zhang, K. Suenaga, C. Colliex, and S. Iijima, “Coaxial nanocable: silicon carbide and silicon oxide sheathed with boron nitride and carbon,” Science 281, 973-975 (1998).
    1.25 Y. Zhang, T. Ichihashi, E. Landree, F. Nihey, and S. Iijima, “Heterostructures of single-walled carbon nanotubes and carbide nanorods,” Science 285, 1719-1722 (1999).
    1.26 J. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes,” Acc. Chem. Res. 32, 435-445 (1999).
    1.27 Y. Cui and C. M. Lieber, “Functional nanoscale electronic devices assembled using silicon nanowires building blocks,” Science 291, 851-853 (2001).
    1.28 Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic gates and computation from assembled nanowires building blocks,” Science 294, 1313-1317 (2001).
    1.29 W. Han, S. Fan, Q. Li, and Y. Hu, “Synthesis of gallium nitride nanorods through a carbon nanotubes-confined reaction,” Science 277, 1287-1289 (1997).
    1.30 J. Hu, L. Li, W. Yang, L. Manna, L. Wang, and A. P. Alivisatos, “Linearly polarized emission from colloidal semiconductor quantum rods,” Science 292, 2060-2063 (2001).
    1.31 W. I. Park, G. C. Yi, M. Y. Kim, and S. J. Pennycook, “Quantum confinement observed in ZnO/ZnMgO nanorod heterostructures,” Adv. Mater. 15, 526-529 (2003).
    1.32 P. G. Collins and P. Avouris, “Nanotubes for electronics,” Sci. Am. 283, 62-69 (2000).
    1.33 E. W. Wang, P. E. Sheehan, and C. M. Lieber, “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes,” Science 277, 1971-1975 (1997).
    1.34 J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel, “Control of thickness and orientation of solution-grown silicon nanowires,” Science 287, 1471-1473 (2000).
    1.35 L. D. Hicks and M. S. Dresselhaus, “Thermoelectric figure of merit of one-dimensional conductor,” Phys. Rev. B 47, 16631-16634 (1993).
    1.36 M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897-1899 (2001).
    1.37 M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowires superlattice structures for nanoscale photonics and electronics,” Nature 415, 617-620 (2002).
    1.38 Y. Cui, X. Duan, J. Hu, and C. M. Lieber, “Doping and electrical transport in silicon nanowires,” J. Phys. Chem. B 104, 5213-5216 (2000).
    1.39 P. G. Collins, M. S. Arnold, and P. Avouris, “Engineering carbon nanotubes and nanotube circuits using electrical breakdown,” Science 292, 706-709 (2001).
    1.40 M. S. Gudiksen, J. Wang, and C. M. Lieber, “Synthetic control of the diameter and length of single crystal semiconductor nanowires,” J. Phys. Chem. B 105, 4062-4064 (2001).
    1.41 X. Duan and C. M. Lieber, “General synthesis of compound semiconductor nanowires,” Adv. Mater. 12, 298-302 (2001).
    1.42 X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409, 66-69 (2001).
    1.43 F. J. Himpsel, T. Jung, A. Kirakosian, J. L. Lin, D. Y. Petrovykh, H. Rauscher, and J. Viernow, “Nanowires by step decoration,” MRS Bulletin 24, 20-24 (1999).
    1.44 H. J. Dai, E. W. Wong, Y. Z. Lu, S. S. Fan, and C. M. Lieber, “Synthesis and characterization of carbide nanorods,” Nature 375, 769-772 (1995).
    1.45 C. R. Martin, “Nanomaterials: a membrane-based synthetic approach,” Science 266, 1961-1966 (1994).
    1.46 R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4, 89-90 (1964).
    1.47 Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides,” Science 291, 1947-1949 (2001).
    1.48 T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, “Solution-liquid-solid growth of crystalline III-V semiconductors: an analogy to vapor-liquid-solid growth,” Science 270, 1791-1794 (1995).
    1.49 S. T. Lee, Y. F. Zhang, N. Wang, Y. H. Tang, I. Bello, C. S. Lee, and Y. W. Chung, “Semiconductor nanowires from oxides,” J. Mater. Res. 14, 4503-4507 (1999).
    1.50 H. Moissan, “The electric furnace,” (Edward Arnold, London, 1904).
    1.51 R. Wehrmann, “High-temperature materials and technology,” edited by I. E. Campbell and E. M. Sherwood (Wiley, New York, 1967), pp. 399-421.
    1.52 M. P. Lepselter and J. M. Andrews, “Ohmic contacts to semiconductors,” edited by B. Schwartz (Electrochem. Soc. Princeton, New Jersey, 1969), pp. 159-183.
    1.53 J. M. Poate, K. N. Tu, and J. W. Mayer, “Thin films-interdiffusion and reactions,” (Wiley, New York, 1978).
    1.54 S. P. Murarka, “Interaction in metallization systems for integrated circuits,” J. Vac. Sci. Technol. B 2, 693-706 (1984).
    1.55 M. A. Nicolet, “Diffusion barriers in thin films,” Thin Solid Films 52, 415-443 (1978).
    1.56 P. S. Ho, “General aspects of barrier layers for very large scale integration applications,” Thin Solid Films 96, 301-316 (1982).
    1.57 K. N. Tu, “Shallow and parallel silicide contacts,” J. Vac. Sci. Technol. 19, 766-777 (1981).
    1.58 A. Y. C. Yu, “Electron tunneling and contact resistance of metal silicon contact barriers,” Solid State Electron. 13, 239-247 (1970).
    1.59 S. P. Murarka, “Refractory silicides for integrated circuits,” J. Vac. Sci. Technol. 17, 775-792 (1980).
    1.60 H. J. Geipel, Jr. N. Hsieh, M. H. Ishaq, C. W. Koburger, and F. R. White, “Composite silicide gate electrodes-interconnections for VLSI device technologies,” IEEE Trans. Electron Devices, ED-27, 1417-1424 (1980).
    1.61 S. P. Murarka and D. B. Fraser, “Thin film interaction between titanium and polycrystalline silicon,” J. Appl. Phys. 51, 342-349 (1980).
    1.62 A. N. Saxena and D. Pramanik, “VLSI multilevel metallization,” Solid State Technol. 27, 93-100 (1984).
    1.63 A. K. Sinha, “Refractory metal silicides for VLSI applications,” J. Vac. Sci. Technol. 19, 778-785 (1981).
    1.64 T. Kawamura, D. Shinoda, and H. Muta, “Oriented growth of the interfacial PtSi layer or between Pt and Si,” Appl. Phys. Lett. 11, 101-103 (1967).
    1.65 W. D. Buckley and S. C. Moss, “Structure and electrical characteristics of epitaxial palladium silicide contacts on single crystal silicon and diffused p-n diodes,” Solid State Electron. 15, 1331-1337 (1972).
    1.66 G. J. van Gurp and C. Langereis, “Cobalt silicide layers on Si. I. Structure and growth,” J. Appl. Phys. 46, 431-4307 (1975).
    1.67 Z. Ma and L. H. Allen, “Silicide technology for integrated circuits,” edited by L. J. Chen (IEE, London, 2004), pp. 49-76.
    1.68 T. B. Massalski, “Binary alloy phase diagrams,” (ASM, Ohio, 1990).
    1.69 M. H. Wang and L. J. Chen, “Phase formation in the interfacial reactions of ultrahigh vacuum deposited titanium thin film on (111)Si,” J. Appl. Phys. 71, 5918-5925 (1992).
    1.70 E. J. van Loenen, A. E. M. J. Fischer, and J. F. van der Veen, “Ti-Si mixing at room temperature: a high resolution ion backscattering study,” Surf. Sci. 155, 65-78 (1985).
    1.71 L. J. Chen, “Solid state amorphization in metal/Si systems,” Mater. Sci. Eng. R 29, 115-152 (2000).
    1.72 W. Lur and L. J. Chen, “Growth kinetics of amorphous interlayer formed by interdiffusion of polycrystalline Ti thin-film and single-crystal silicon,” Appl. Phys. Lett. 54, 1217-1219 (1989).
    1.73 H. Jeon, C. A. Sukow, J. W. Honeycutt, G. A. Rozgoni, and R. J. Nemanich, “Morphology and phase stability of TiSi2 on Si,” J. Appl. Phys. 71, 4269-4276 (1992).
    1.74 Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, “Single-crystal metallic nanowires and meta/semiconductor nanowire heterostructures,” Nature 430, 61-65 (2004).
    1.75 B. Xiang, Q. X. Wang, Z. Wang, X. Z. Zhang, L. Q. Liu, J. Xu, and D. P. Yu, “Synthesis and field emission properties of TiSi2 nanowires,” Appl. Phys. Lett. 86, 243103 (2005).
    1.76 A. L. Schmitt, L. Zhu, D. Schmeisser, F. J. Himpsel, and S. Jin, “Metallic single-crystal CoSi nanowires via chemical vapor deposition of single-source precursor,” J. Phys. Chem. B 110, 18142-18146 (2006).
    1.77 H. C. Hsu, W. W. Wu, H. F. Hsu, and L. J. Chen, “Growth of high-density titanium silicide nanowires in a single direction on a silicon surface,” Nano Lett. 7, 885-889 (2007).
    1.78 Z. He, D. J. Smith, and P. A. Bennett, “Endotaxial silicide nanowires,” Phys. Rev. Lett. 93, 256102 (2004).
    1.79 Y. L. Chueh, M. T. Ko, L. J. Chou, L. J. Chen, C. S. Wu, and C. D. Chen, “TaSi2 nanowires: a potential field emitter and interconnect,” Nano Lett. 6, 1637-1644 (2006).
    1.80 J. Nogami, B. Z. Liu, M. V. Katkov, C. Ohbuchi, and N. O. Birge, “Self-assembled rare-earth silicide nanowire on Si(001),” Phys. Rev. B 63, 233305 (2001).
    1.81 Y. Chen, D. A. A. Ohlberg, G. Medeiros-Ribeiro, Y. A. Chang, and R. S. Williams, “Self-assembled growth of epitaxial erbium disilicide nanowires on silicon (001),” Appl. Phys. Lett. 76, 4004-4006 (2000).
    1.82 C. Preinesberger, S. Vandré, T. Kalka, and M. Dähne-Prietsch, “Formation of dysprosium silicide wires on Si(001), ” J. Phys. D 31, L43-L45 (1998).
    1.83 K. L. Kavanagh, M. C. Reuter, and R. M. Tromp, “High-temperature epitaxy of PtSi/Si(001),” J. Cryst. Growth 173, 393-401 (1997).
    1.84 S. Liang, R. Islam, D. J. Smith, and P. A. Bennett, “Phase transformation in FeSi2 nanowires,” J. Cryst. Growth 295, 166-171 (2006).
    1.85 C. A. Decker, R. Solanki, J. L. Freeouf, J. R. Carruthers, and D. R. Evans, “Directed growth of nickel silicide nanowires,” Appl. Phys. Lett. 84 1389-1391 (2004).
    1.86 A. L. Schmitt, M. J. Bierman, D. Schmeisser, F. J. Himpsel, and S. Jin, “Synthesis and properties of single-crystal FeSi nanowires,” Nano Lett. 6, 1617-1621 (2006).
    1.87 R. D. Mede and D. Vanderilt, “Adatom on Si(111) and Ge(111) surface,” Phys. Rev. B 40, 3905-3913 (1989).
    1.88 P. A. Bennett and M. W. Webb, “The Si(111)7×7 to “1×1” transition,” Surf. Sci. 104, 74-104 (1980).
    1.89 P. P. Auer and W. Mönch, “Cleaved Si(111) surface: geometrical and annealing behavior,” Surf. Sci. 80, 45-55 (1979).
    1.90 K. Takayanagi, Y. Tanishiro, M. Takahashi, and S. Takahashi, “Structural analysis of Si(111)-7×7 by UHV-transmission electron diffraction and microscopy,” J. Vac. Sci. Technol. A 3, 1502-1506 (1985).
    1.91 K. Takayanagi, Y. Tanishiro, S. Takahashi, and M. Takahashi, “Structure analysis of Si(111)-7×7 reconstructed surface by transmission electron diffraction,” Surf. Sci. 164, 367-392 (1985).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE