研究生: |
李存善 Lee, Chun-Shan. |
---|---|
論文名稱: |
低漏電流與低導通電壓之矽基板氮化鎵雙金屬蕭特基二極體 GaN Dual-Metal-Anode Schottky Barrier Diodes on Si Substrate with Low Leakage Current and Low Turn On Voltage |
指導教授: |
徐碩鴻
Hsu, Shuo-Hung |
口試委員: |
辛裕明
Hsin, Yue-Ming 黃智方 Huang, Chih-Fang |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 68 |
中文關鍵詞: | 氮化鎵 、蕭特基二極體 、低漏電流 、低導通電壓 |
外文關鍵詞: | GaN, Low Leakage Current, Low Turn On Voltage, Schottky Barrier Diodes |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
氮化鎵 所具有的 寬能隙 (3.4 eV)材料特性 、材料本身的高熱耐性 、以及具備 以及具備 以及具備 以及具備 高電子飽和速度 高電子飽和速度 高電子飽和速度 高電子飽和速度 高電子飽和速度 高電子飽和速度 高電子飽和速度 (1~3×107cm/s)使其可以承受 使其可以承受 使其可以承受 使其可以承受 使其可以承受 使其可以承受 高臨界電 高臨界電 高臨界電 高臨界電 場(3MV/cm),於高溫壓 環境中也能有很好的表現 ,對於高功率元件 對於高功率元件 的應用 來說擁有相當程度的 優勢,因 優勢,因 優勢,因 此近年來以氮化鋁鎵 /氮化鎵材料為主的電子元件 大量的被關注 ,然而氮化鎵材 料的磊晶並不容易,導致製作成本相當高因此 料的磊晶並不容易,導致製作成本相當高因此 料的磊晶並不容易,導致製作成本相當高因此 料的磊晶並不容易,導致製作成本相當高因此 料的磊晶並不容易,導致製作成本相當高因此 以 GaN-on-Silicon為基板既能 夠降低也能保有氮化鎵特點被大量的應用, 夠降低也能保有氮化鎵特點被大量的應用, 夠降低也能保有氮化鎵特點被大量的應用, 夠降低也能保有氮化鎵特點被大量的應用, 夠降低也能保有氮化鎵特點被大量的應用, 夠降低也能保有氮化鎵特點被大量的應用, 夠降低也能保有氮化鎵特點被大量的應用, 夠降低也能保有氮化鎵特點被大量的應用, 夠降低也能保有氮化鎵特點被大量的應用, 夠降低也能保有氮化鎵特點被大量的應用, 夠降低也能保有氮化鎵特點被大量的應用, 夠降低也能保有氮化鎵特點被大量的應用, 夠降低也能保有氮化鎵特點被大量的應用, 夠降低也能保有氮化鎵特點被大量的應用, 夠降低也能保有氮化鎵特點被大量的應用, 夠降低也能保有氮化鎵特點被大量的應用, 夠降低也能保有氮化鎵特點被大量的應用, 夠降低也能保有氮化鎵特點被大量的應用, 夠降低也能保有氮化鎵特點被大量的應用, 像是高電子遷移率晶體 像是高電子遷移率晶體 像是高電子遷移率晶體 像是高電子遷移率晶體 像是高電子遷移率晶體 像是高電子遷移率晶體 像是高電子遷移率晶體 像是高電子遷移率晶體 像是高電子遷移率晶體 像是高電子遷移率晶體 像是高電子遷移率晶體 (High electron mobility transistor)或是蕭特基二極體 或是蕭特基二極體 (Schottky barrier diode)都是其應用的 例子 。
因此, 本論文 將會 以氮化鋁鎵 /氮化鎵蕭特基二極體 在矽基板上 為主軸做研 為主軸做研 為主軸做研 為主軸做研 為主軸做研 究與探討 ,分成 元件之設計、製造量測分析 元件之設計、製造量測分析 元件之設計、製造量測分析 元件之設計、製造量測分析 元件之設計、製造量測分析 元件之設計、製造量測分析 元件之設計、製造量測分析 元件之設計、製造量測分析 等不同段落做討論 。主要研究如 何利用雙金屬陽極的佈局 降低導通電壓, 降低導通電壓, 利用功函數較低的 鈦金屬使陰陽導通電壓降低,並且透過陽極的蝕刻 電壓降低,並且透過陽極的蝕刻 電壓降低,並且透過陽極的蝕刻 使降低導通電壓的效果更好,同時配合功函數較 使降低導通電壓的效果更好,同時配合功函數較 使降低導通電壓的效果更好,同時配合功函數較 使降低導通電壓的效果更好,同時配合功函數較 高的鎳金屬抑制漏電流。
隨著鈦金屬的比例增加導通電壓會下降,但是漏流也之上升由 隨著鈦金屬的比例增加導通電壓會下降,但是漏流也之上升由 隨著鈦金屬的比例增加導通電壓會下降,但是漏流也之上升由 隨著鈦金屬的比例增加導通電壓會下降,但是漏流也之上升由 隨著鈦金屬的比例增加導通電壓會下降,但是漏流也之上升由 隨著鈦金屬的比例增加導通電壓會下降,但是漏流也之上升由 此可見一味地增加鈦金屬 的比例並不是良策,因本論文將會利用同此可見一味地增加鈦金屬 的比例並不是良策,因本論文將會利用同此可見一味地增加鈦金屬 的比例並不是良策,因本論文將會利用同比例、鈦金屬 與陰極的距離以及蝕刻位置去做探討。其中較好佈局比例、鈦金屬 與陰極的距離以及蝕刻位置去做探討。其中較好佈局比例、鈦金屬 與陰極的距離以及蝕刻位置去做探討。其中較好佈局比例、鈦金屬 與陰極的距離以及蝕刻位置去做探討。其中較好佈局比例、鈦金屬 與陰極的距離以及蝕刻位置去做探討。其中較好佈局比例、鈦金屬 與陰極的距離以及蝕刻位置去做探討。其中較好佈局比例、鈦金屬 與陰極的距離以及蝕刻位置去做探討。其中較好佈局的比例將可以使 導通電壓從約 0.95V降低 至約 0.42V,但是漏電流會相對地提升 到約 10-5A/mm,順向電流最高可以達到 ,順向電流最高可以達到 0.121 A/mm,最高的崩潰電壓則可以達 ,最高的崩潰電壓則可以達 到 860 V。
Abstract
Gallium nitride has the advantages of wide bandgap(3.4eV), high critical electric field(3.4MV/cm), great thermal stability, and high electron saturation velocity(2×107cm/s), which makes it to be operated under high temperature and high voltage.
However, one issue is the relatively high cost of GaN based materials. In this study, we use GaN-on-Silicon to solve to problem. GaN-on-Silicon can remain the advantages of GaN and reduce the cost. These advantages make gallium nitride devices great for high frequency and high power applications. Such as High electron mobility transistor (Hemts) and Schottky barrier diode(SBDs) are quite popular recently.
Therefore, this thesis will present the study of AlGaN/GaN Schottky barrier diode on the silicon substrate, including device design, manufacturing, measurement, and discussion. It will be mainly focused on how to reduce the turn-on voltage of the Schottky barrier diode and also suppress leakage current by layout design. We use titanium metal which has low work function to reduce the turn-on voltage of Schottky barrier diode. Also, nickel with a higher work function is used to suppress leakage current.
As ratio of titanium in Ti/Au anode increases, the turn-on voltage will be decreased. However, it will also cause the increase of leakage current. Different ratios of Ti/Au with various layout geometries have been evaluated for low turn-on voltage and
2
suppressed leakage current. The measured results show that the optimized layout and ratio of Ti/Au will reduce the turn-on voltage from about 0.95V to 0.42V. The highest forward current is 0.121 A/mm, but leakage current will be increased to about 10-5A/mm.
.
參考文獻
[1] S. Heck, A. Bräckle, M. Berroth, S. Maroldt , R. Quay., “A high-power dual gate GaN switching-amplifier in GHz-range,” Wireless and Microwave Technology Conference (WAMICON), 2011 IEEE 12th Annual., pp.1-4, 2011.
[2] U. K. Mishra, L. Shen, T. E. Kazior, Y.- F. Wu., “GaN-Based RF power devices and amplifiers,” Proceedings of the IEEE ., vol. 96, no. 2, pp.287-305. 2008.
[3] S. Lenci et al., “Au-free AlGaN/GaN power diode on 8-in Si substrate with gated edge termination,” IEEE Electron Device Letters., vol. 34, no. 8, pp. 1035-1037, 2013.
[4] D. Marcon et al., “Manufacturing challenges of GaN-on-Si HEMTs in a 200 mm CMOS fab,” IEEE Transactions on Semiconductor Manufacturing , vol. 26, no. 3, pp. 361-367, Aug. 2013.
[5] T. Hashizume et al., “Surface control process of AlGaN for suppression of gate leakage currents in AlGaN/GaN heterostructure field effect transistors”, Japanese J. Applied Physics 45, L111113, 2006
[6] S. C. Liu, G. M. Dai, E. Y. Chang., “Improved reliability of GaN HEMTs using N2 plasma surface treatment ,’’ 2015 IEEE 22nd International Symposium on the Physical and Failure Analysis of Integrated Circuits., pp. 378-380, Jul. 2015.
[7] Y.-W. Lian, Y.-S. Lin, J.-M. Yang, C.-H. Cheng, and Shawn S. H. Hsu, “AlGaN/GaN Schottky barrier diodes on silicon substrates with selective Si diffusion for low onset voltage and high reverse blocking,’’ IEEE Electron Device Letters., vol. 34, issue 8, pp. 981-983, Aug. 2013.
[8] Y. Yao et al., “Current transport mechanism of AlGaN/GaN Schottky barrier diode with fully recessed Schottky anode,” Japanese Journal of Applied Physics, vol. 54, Jan. 2015.
[9] O. Ambacher et al., “Growth and applications of group III-nitrides,” Journal of
Physics D (Applied Physics), vol. 31, pp. 2653-2710, 1998.
[10] M. Willander et al., “Silicon carbide and diamond for high temperature devices
applications,” Journal of materials science: materials in electronics, pp. 1-25,2006.
[11] B. Gelmont et al., “Monte Carlo simulation of electron transport in gallium
nitride,” J. Appl. Phys., vol. 74, no. 3, pp. 1818-1821, 1993.
[12] B.J. Baliga, “Semiconductors for high voltage vertical channel field effect transistors,” J. Appl Phys , vol 53, pp 1759-1764, 1982.
[13] J. L. Hudgins et al., “An assessment of wide bandgap semiconductors for power devices,” IEEE Transactions on power electronics, vol. 18, no. 3, May. 2003.
[14] O. Ambacher et al., “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,’’ Journal of Applied Physics, vol. 85, num. 6, Mar. 1999.
[15] S. L. Selvaraj et al., “1.4-kV breakdown voltage for AlGaN/GaN high-electron mobility transistors on silicon substrate,’’ IEEE Electron Device Letters., vol. 33, no. 10, pp. 1375-1377,Oct. 2012.
[16] M. G. Ganchenkova and R. M. Nieminen “Nitrogen vacancies as major point defects in gallium nitride,” Phys. Rev. Lett., vol. 96, no. 19, 196402., May. 2012.
[17] Z. H. Liu, G. I. Ng, H. Zhou, S. Arulkumaran, Y.K. Maung “Reduced surface leakage current and trapping effects in AlGaN/GaN high electron mobility transistor on silicon with SiN/Al2O3 passivation,” Applied Physics Letters., 113506., Mar. 2011.
[18] A. Edwards et al., “Improved reliability of AlGaN-GaN HEMTs using an NH3 plasma treatment prior to SiN passivation,’’ IEEE Electron Device Letters., vol. 26, issue 4, pp. 225-227, April. 2005.
[19] G. Vanko et al., “Impact of SF6 plasma on DC and microwave performance of AIGaN/GaN HEMT structures,’’ Advanced Semiconductor Devices and Microsystems (ASDAM), pp. 335-338, Oct. 2008.
[20] S.-C. Liu, B.-Y. Chen, Y.-C. Lin, T.-E. Hsieh, H.-C. Wang, and E.Y. Chang, “GaN MIS-HEMTs with nitrogen passivation for power device applications,” IEEE Electron Device Letters., vol. 35,no. 10, pp. 1001–1003, Oct. 2014.
[21] J. Y. Shiu et al., “Oxygen ion implantation isolation planar process for AlGaN/GaN HEMTs,” IEEE Electron Device Letters, vol. 28, no. 6, pp. 476-478, Jun. 2007.
[22] B. Boudart et al., “Raman characterization of Mg+ ion-implanted GaN,” J. Phys. Condens Matter, vol. 16, no. 2, pp. s49-s55, Jan. 2004.
[23] T. Oishi et al., “Highly resistive GaN layers formed by ion implantation of Zn along the c-axis,” J. Appl. Phys., vol. 94, no. 3, pp. 1662-1666, Aug. 2003.
[24] A.Vertiatchikh et al., “Structural properties of alloyed Ti/Al/Ti/Au and Ti/Al/Mo/Au Ohmic contacts to AlGaN/GaN,” Solid-State Electronics., vol. 50, no.7-8, pp. 1452-1429, Aug. 2006.
[25] A. Motayed, R. Bathe, M. C. Wood, O. S. Diouf, R. D. Vispute, S. Noor Mohammad “Electrical, thermal, and microstructural characteristics of Ti/Al/Ti/Au multilayer Ohmic contacts to n-type GaN,” Applied Physics Letters., vol 93, no 2, pp. 1087-1094., Mar. 2013.
[26] Z. Yang, K. Li, J. Alperin, and W. I. Wang, “Nitrogen vacancy as the donor: experimental evidence in the ammonia-assisted molecular beam epitaxy of GaN,”J. Electrochem. Soc., Vol. 144, No. 10, Oct.1997.
[27] Y. Linet al., “Schottky barrier height and nitrogen-vacancy-related defects in Ti alloy,” J. Appl. Phys., vol. 95, Jun. 2004.
[28] A. Edwards et al., “Improved reliability of AlGaN-GaN HEMTs using an NH3 plasma treatment prior to SiN passivation,’’ IEEE Electron Device Letters., vol. 26, issue 4, pp. 225-227, April. 2005
[29] C. Rongming et al., “Plasma treatment for leakage reduction in AlGaN/GaN and GaN Schottky contacts,’’ IEEE Electron Device Letters., vol. 29, issue 4, pp. 297-299, Arpil. 2008.
[30] G. Vanko et al., “Impact of SF6 plasma on DC and microwave performance of AIGaN/GaN HEMT structures,’’ Advanced Semiconductor Devices and Microsystems (ASDAM), pp. 335-338, Oct. 2008.
[31] M.Tajimaand and T. Hashizume “Impact of gate and passivation structures on current collapse of AlGaN/GaN high-electron-mobility transistors under off-state-bias stress,” J. Appl. Phys., vol. 50, pp.061001, Jun. 2011.
[32] S. Huang et al., “Effective passivation of AlGaN/GaN HEMTs by ALD-grown AlN think film,” IEEE Electron Device Letters., vol. 33, no. 4, pp. 516–518, Apr. 2012.
[33] R. Fitch et al., “Comparison of passivation layers for AlGaN/GaN high electron mobility transistors,” J. Vac. Sci. Technol., B, vol. 29, no. 6, pp. 061204, Oct. 2011.
[34] T. Hashizume et al., “Leakage mechanism in GaN and AlGaN Schottky interfaces,” Appl. Phys. Lett., vol. 84, no. 24, pp.4884-4886, Jun. 2004.
[35] C.Tang et al., “Buffer leakage induced pre-breakdown mechanism for AlGaN/GaN HEMTs on Si,” Communications, Circuits and Systems (ICCCAS), 2013 International Conference., vol. 2, pp.353-357, Nov. 2013.
[36] J. W. P. Hsu, M. J. Manfra, R. J. Molnar, B. Heying, J. S. Speck, “Direct imaging of reverse-bias leakage through pure screw dislocations in GaN films grown by molecular beam epitaxy on GaN templates,” Applied Physics Letters., Vol. 81, pp. 79 - 81, 2002.
[37] T.-F. Chang, C.-F. Huang, T.-Y. Yang, C.-W. Chiu, T.-Y. Huang, K.-Y. Lee, F. Zhao “Low turn-on voltage dual metal AlGaN/GaN Schottky barrier diode,” Solid-State Electronics., pp.12-15, 2015.