簡易檢索 / 詳目顯示

研究生: 林峻霆
Chun-Ting Lin
論文名稱: 以奈米碳管陣列為直接甲醇燃料電池陽極鉑觸媒載體之氣體移除能力研究
Enhanced Bubble Removal Capability by CNTs Array supported Pt Catalyst for DMFC
指導教授: 曾繁根
Fan-Gang Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 89
中文關鍵詞: 直接甲醇燃料電池二氧化碳移除
外文關鍵詞: DMFC, CO2 bubble
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在直接甲醇燃料電池(DMFC)系統中,陽極CO2移除議題近年來已經被廣泛討論於擴散層的設計上。奈米碳管 (CNTs) 被認為是最有機會同時提供大的比表面積,且幫助氣體移除的觸媒載體。在本篇研究中,首先利用電化學配合光學觀測系統,同時紀錄電催化反應進行的即時電極影像和電流隨時間的震盪行為,證實了CNTs作為觸媒載體有較好的氣體移除能力。此CNTs陣列可望取代傳統觸媒載體,應用於DMFC的陽極CO2移除上。
    觸媒載體平面矽基材、碳布、碳紙,及直接成長於矽基材與碳布上之不同形貌的CNTs陣列,用來搭配蒸鍍、化學還原法,並進行陽極甲醇半電池測試。循環伏安法(CV)被使用於判斷觸媒活性及有效表面積。定電位法 (I-t) 被用於觀測電催化反應中電流隨時間的震盪趨勢以及電極表面氣泡脫附狀況。
    電化學配合光學即時觀測系統被用於本實驗上,藉由施加一定電壓於觸媒層上,配合攝影機捕捉觸媒層表面氣體脫附動態影像,同時紀錄電流隨時間的震盪行為。初期使用蒸鍍白金於不同碳載體上,在H2O2及H2SO4環境中模擬DMFC的陽極甲醇催化反應,發現CNTs載體上有較小且迅速的氣泡脫離現象。
    本實驗後期嘗試化學還原法沉積白金觸媒於不同觸媒載體上,透過提高觸媒沉積量,已經可以直接觀測觸媒層CO2的動態移除行為。在甲醇電催化反應中,以CNTs為觸媒載體之電極上,其較小的CO2氣泡脫離行為亦被紀錄下來。


    章節目錄 壹、前言 1 1.1 直接甲醇燃料電池 4 1.2 DMFC工作原理 5 1.3 DMFC面臨之挑戰 8 1.4 本論文的研究動機與目標 10 貳、文獻回顧 12 2.1 甲醇陽極反應動力學 12 2.2 奈米碳管作為觸媒載體之電化學測試 14 2.3 DMFC陽極二氧化碳氣泡之觀測與移除 20 2.4 微型DMFC及其陽極擴散層設計 29 参、實驗設計、設備與方法 33 3.1 實驗架構與流程 33 3.2 試片準備 34 3.3 奈米碳管成長 35 3.4 化學沉積法製備白金觸媒系統建立 36 3.5 電化學量測系統之建立 37 3.6 電化學配合光學即時觀測系統之建立 39 肆、實驗結果與討論 41 4.1 蒸鍍白金觸媒搭配不同載體之催化能力及氣體移除能力(H2O2 - O2) 41 4.2 蒸鍍白金於不同載體之電催化反應氣體移除效能差異 (H2SO4 - H2) 52 4.3 還原白金觸媒(R01製程)搭配不同載體之催化能力及其氣體移除能力 (MeOH - CO2) 60 4.4 開放系統還原白金觸媒之改良(R02製程)觸媒測試及CO2移除測試 70 伍、結論 86 陸、參考文獻 87

    [1] 黃鎮江, 燃料電池: 全華科技圖書股份有限公司, 2005.
    [2] J. Larminie and A. Dicks, Fuel Cell Systems Explained: John Wiley and Sons Ltd., 2003.
    [3] K. Kleiner, "Assault on batteries," Nature, vol. 441, pp. 1046-1047, Jun 2006.
    [4] A. Hamnett, "Mechanism and electrocatalysis in the direct methanol fuel cell," Catalysis Today, vol. 38, pp. 445-457, Nov 1997.
    [5] T. Frelink, W. Visscher, and J. A. R. Vanveen, "ON THE ROLE OF RU AND SN AS PROMOTERS OF METHANOL ELECTROOXIDATION OVER PT," Surface Science, vol. 335, pp. 353-360, Jul 1995.
    [6] B. R. Rauhe, F. R. McLarnon, and E. J. Cairns, "DIRECT ANODIC-OXIDATION OF METHANOL ON SUPPORTED PLATINUM RUTHENIUM CATALYST IN AQUEOUS CESIUM CARBONATE," Journal of the Electrochemical Society, vol. 142, pp. 1073-1084, Apr 1995.
    [7] D. H. Jung, C. H. Lee, C. S. Kim, and D. R. Shin, "Performance of a direct methanol polymer electrolyte fuel cell," Journal of Power Sources, vol. 71, pp. 169-173, Mar 1998.
    [8] S. Wasmus and A. Kuver, "Methanol oxidation and direct methanol fuel cells: a selective review," Journal of Electroanalytical Chemistry, vol. 461, pp. 14-31, Jan 1999.
    [9] C. H. Wang, H. Y. Dub, Y. T. Tsai, C. P. Chen, C. J. Huang, L. C. Chen, K. H. Chen, and H. C. Shih, "High performance of low electrocatalysts loading on CNT directly grown on carbon cloth for DMFC," Journal of Power Sources, vol. 171, pp. 55-62, Sep 2007.
    [10] M. C. Tsai, T. K. Yeh, C. Y. Chen, and C. H. Tsai, "A catalytic gas diffusion layer for improving the efficiency of a direct methanol fuel cell," Electrochemistry Communications, vol. 9, pp. 2299-2303, Sep 2007.
    [11] S. K. Wang, F. G. Tseng, T. K. Yeh, and C. C. Chieng, "Electrocatalytic properties improvement on carbon-nanotubes coated reaction surface for micro-DMFC," Journal of Power Sources, vol. 167, pp. 413-419, May 2007.
    [12] Z. B. He, J. H. Chen, D. Y. Liu, H. Tang, W. Deng, and W. F. Kuang, "Deposition and electrocatalytic properties of platinum nanoparticals on carbon nanotubes for methanol electrooxidation," Materials Chemistry and Physics, vol. 85, pp. 396-401, Jun 2004.
    [13] M.-C. Tsai, T.-K. Yeh, Z.-Y. Juang, and C.-H. Tsai, "Physical and electrochemical characterization of platinum and platinum-ruthenium treated carbon nanotubes directly grown on carbon cloth," Carbon, vol. 45, pp. 383-389, 2007.
    [14] P. Argyropoulos, K. Scott, and W. M. Taama, "Carbon dioxide evolution patterns in direct methanol fuel cells," Electrochimica Acta, vol. 44, pp. 3575-3584, 1999.
    [15] K. Scott, P. Argyropoulos, P. Yiannopoulos, and W. M. Taama, "Electrochemical and gas evolution characteristics of direct methanol fuel cells with stainless steel mesh flow beds," Journal of Applied Electrochemistry, vol. 31, pp. 823-832, Aug 2001.
    [16] H. Yang and T. S. Zhao, "Effect of anode flow field design on the performance of liquid feed direct methanol fuel cells," Electrochimica Acta, vol. 50, pp. 3243-3252, 2005.
    [17] G. Q. Lu and C. Y. Wang, "Electrochemical and flow characterization of a direct methanol fuel cell," Journal of Power Sources, vol. 134, pp. 33-40, Jul 2004.
    [18] J. Zhang, G. P. Yin, Q. Z. Lai, Z. B. Wang, K. D. Cai, and P. Liu, "The influence of anode gas diffusion layer on the performance of low-temperature DMFC," Journal of Power Sources, vol. 168, pp. 453-458, Jun 2007.
    [19] H. Yang, T. S. Zhao, and Q. Ye, "In situ visualization study of CO2 gas bubble behavior in DMFC anode flow fields," Journal of Power Sources, vol. 139, pp. 79-90, Jan 2005.
    [20] Q. Liao, X. Zhu, X. Y. Zheng, and Y. D. Ding, "Visualization study on the dynamics of CO2 bubbles in anode channels and performance of a DMFC," Journal of Power Sources, vol. 171, pp. 644-651, Sep 2007.
    [21] M. D. Lundin and M. J. McCready, "Reduction of carbon dioxide gas formation at the anode of a direct methanol fuel cell using chemically enhanced solubility," Journal of Power Sources, vol. 172, pp. 553-559, Oct 2007.
    [22] 莊睿欣, "觀察甲醇燃料電池陽極氣泡產生與脫離現象-以雙氧水代替甲醇模擬氣泡的生成," 國立清華大學碩士論文, 2005.
    [23] J. M. Chang, F. G. Tseng, and C. C. Chieng, "Nanosized Bubble Detection by AFM " in International Conference on Multiphase Flow Germany, 2007.
    [24] S. K. Kamarudin, W. R. W. Daud, S. L. Ho, and U. A. Hasran, "Overview on the challenges and developments of micro-direct methanol fuel cells (DMFC)," Journal of Power Sources, vol. 163, pp. 743-754, Jan 2007.
    [25] 許志豪, "微型直接甲醇燃料電池陽極反應區奈微結構之研製," 國立清華大學碩士論文, 2003.
    [26] C. Litterst, S. Eccarius, C. Hebling, R. Zengerle, and P. Koltay, "Increasing mu DMFC efficiency by passive CO2 bubble removal and discontinuous operation," Journal of Micromechanics and Microengineering, vol. 16, pp. S248-S253, Sep 2006.
    [27] G. Q. Lu, C. Y. Wang, T. J. Yen, and X. Zhang, "Development and characterization of a silicon-based micro direct methanol fuel cell," Electrochimica Acta, vol. 49, pp. 821-828, Feb 2004.
    [28] S. Motokawa, M. Mohamedi, T. Momma, S. Shoji, and T. Osaka, "MEMS-based design and fabrication of a new concept micro direct methanol fuel cell (mu-DMFC)," Electrochemistry Communications, vol. 6, pp. 562-565, Jun 2004.
    [29] T. J. Yen, N. Fang, X. Zhang, G. Q. Lu, and C. Y. Wang, "A micro methanol fuel cell operating at near room temperature," Applied Physics Letters, vol. 83, pp. 4056-4058, Nov 2003.
    [30] J. Wang, Analytical Electrochemistry, 2nd ed.: A John Wiley & Sons, Inc., 2001.
    [31] 王壽凱, "微型甲醇燃料電池之表面奈米化陽極電催化測試與微氣泡觀測研究," 國立清華大學碩士論文, 2006.
    [32] 賴羿如, "利用奈米碳管與鉑釕化學沉積法製備直接甲醇燃料電池陽極觸媒," 國立清華大學碩士論文, 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE