簡易檢索 / 詳目顯示

研究生: 邱美慈
論文名稱: 建構果蠅腦內影響動機的神經網路圖譜
Mapping Motivation Circuits in the Drosophila Brain
指導教授: 江安世
口試委員: 傅在峰
吳嘉霖
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 43
中文關鍵詞: 果蠅動機神經胜肽F
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 神經胜肽是一種神經元的信號分子,他們能調節廣泛的生理及行為。果蠅神經胜肽F(NPF)是一種與哺乳類的神經胜肽Y (NPY) 同源的胜肽,並且能夠調控多種大腦的功能,尤其是飢餓引發的動機反應;而其可以加速長期記憶的形成。為了能深入了解如何透過NPF信號的傳遞來調節動機與記憶行為,最主要的步驟是要先了解NPF的神經元網路分布以及了解神經之間的訊號是如何流動。在這個研究裡,我們分析NPF與其受器NPFR1的神經網路。我們發現一對位於前外側的神經(DAL2)神經元同時表現了NPF 受器以及NMDA受器,且與長期記憶相關的DAL神經元在dorso-frontal protocerebrum(SDFP)的區域有結構性連結。因此我們推測DAL2神經元釋放出的NPF的信號可被在DAL上的NPFR1接收而調控果蠅的長期記憶,另外,神經極性分析結果顯示,NPF的訊號可能被DAL2神經元接收,透過這樣的自體反回饋機制,來增加DAL2本身以及其下游DAL神經元的活性。在果蠅成蟲腦裡,我們也發現NPFR1會表現在部分多巴胺神經元上,而NPF訊號可能藉由多巴胺神經上的NPFR1,將NPF訊號導入多巴胺神經系統,而調節食慾或厭惡的記憶行為。且NPF神經元DAL2也與多巴胺神經元在SDFP也有結構性的連結。這些結果顯示有三條NPF/NPFR1資訊流通的路徑,分別為DAL2 (NPF) 至多巴胺神經元、DAL2 (NPF)至DAL (NPFR1)神經元和DAL2 (NPF) 傳至DAL2 (NPFR1)神經元,這三條路徑都主要在SDFP區域有連結,來調控多種相關的行為反應。


    Neuropeptides are a group of neuronal signalling molecules that modulate a wide range of physiological processes and behaviors. The Drosophila neuropeptide F (NPF), a homolog to human NPY, is involved in a wide range of brain functions, especially hunger-induced motivational response which can facilitate the Long-term memory (LTM) formation. To understand how NPF signals are transmitted and regulate motivational and memory behaviors, it is critical to know the circuitry wiring and connectome of NPF neurons. Here, we analysed NPF positive neurons and their receptor NPFR1 neurons. A pair of NPF-positive dorsal-anterior-lateral2 (DAL2) neurons was demonstrated also NPFR1 and NMDAR positive have structured connections with LTM neuron-DAL in superior dorsofrontal protocerebrum (SDFP) region. We postulated that the DAL2 releases NPF signals received by NPFR1 in the DAL neuron to regulate long-term memory. Polarity analysis showed the DAL2 neurons could receive NPF signal through an autocrine feedback mechanism to increase the activity of themselves and their downstream DAL neurons. In the adult brain, subsets of dopaminergic neurons expressed NPFR1 that might conduct the NPF signals into the dopaminergic (DA) system which involve in appetitive and aversive memory behaviour. And the NPF-positive DAL2 neuron also have structured connections with DA neurons in the SDFP region. These findings suggested three information flowing pathways from NPF to NPFR1, (i) DAL2 (NPF) --> DA neurons, (ii) DAL2 (NPF) --> DAL (NPFR1), and (iii) DAL2 (NPF) --> DAL2 (NPFR1), all connection major in the SDFP region to modulate relative behaviours.

    Table of Contents 致謝 2 中文摘要 3 Abstract 4 1. Introduction 5 2. Materials and Methods 7 2.1 Fly Stocks 7 2.2 Sample Preparation and Immunohistochemistry 7 2.2.1 Protocol I: 7 2.2.2 Protocol II: 8 2.3 Confocal Microscopy and Image Processing 9 3. Results 10 3.1 The NPF/NPFR1 Neuronal Circuit in the Adult Drosophila Brain 10 3.2 The NPF-positive DAL2 Neurons Connect with the NPFR1-positive DAL Neurons in the SDFP 12 3.3 Receptor for Memory Formation is also Expressed in the NPF-positive DAL2 Neurons 13 3.4 Subsets of NPFR1 Neurons are Dopaminergic in Adult Drosophila Brain 14 3.6 Prediction of NPF Downstream TH-positive Single Neuron 15 4. Discussion 16 5. References 19 6. Figures and Figure legends 23 7. Tables 34 8. Appendix Figures 36

    Bannon, A.W., Seda, J., Carmouche, M., Francis, J.M., Norman, M.H., Karbon, B., and McCaleb, M.L. (2000). Behavioral characterization of neuropeptide Y knockout mice. Brain Research 868, 79-87.
    Berridge, K.C. (2004). Motivation concepts in behavioral neuroscience. Physiology & Behavior 81, 179-209.
    Berthoud, H.R. (2002). Multiple neural systems controlling food intake and body weight. Neuroscience & Biobehavioral Reviews 26, 393-428.
    Brown, M.R., Crim, J.W., Arata, R.C., Cai, H.N., Chun, C., and Shen, P. (1999). Identification of a Drosophila brain-gut peptide related to the neuropeptide Y family. Peptides 20, 1035-1042.
    Chapman, R.F., Bernays, E.A., and Stoffolano, J.G. (1987). Perspectives in chemoreception and behavior (Springer-Verlag).
    Chen, C.C., Wu, J.K., Lin, H.W., Pai, T.P., Fu, T.F., Wu, C.L., Tully, T., and Chiang, A.S. (2012). Visualizing long-term memory formation in two neurons of the Drosophila brain. Science 335, 678-685.
    Chiang, A.S., Lin, C.Y., Chuang, C.C., Chang, H.M., Hsieh, C.H., Yeh, C.W., Shih, C.T., Wu, J.J., Wang, G.T., Chen, Y.C., et al. (2011). Three-Dimensional Reconstruction of Brain-wide Wiring Networks in Drosophila at Single-Cell Resolution. Current Biology 21, 1-11.
    Chiang, A.S., Liu, Y.C., Chiu, S.L., Hu, S.H., Huang, C.Y., and Hsieh, C.H. (2001). Three-dimensional mapping of brain neuropils in the cockroach, Diploptera punctata. The Journal of comparative neurology 440, 1-11.
    Clark, J.T., Kalra, P.S., and Kalra, S.P. (1985). Neuropeptide Y Stimulates Feeding but Inhibits Sexual Behavior in Rats. Endocrinology 117, 2435-2442.
    Dethier, V.G. (1976). The hungry fly: a physiological study of the behavior associated with feeding (Harvard University Press).
    DiBona, G.F. (2002). Neuropeptide Y. American journal of physiology Regulatory, integrative and comparative physiology 282, R635-636.
    Dougan, P.M., Mair, G.R., Halton, D.W., Curry, W.J., Day, T.A., and Maule, A.G. (2002). Gene organization and expression of a neuropeptide Y homolog from the land planarian Arthurdendyus triangulatus. The Journal of comparative neurology 454, 58-64.
    El Bahh, B., Auvergne, R., Leré, C., Brana, C., Le Gal La Salle, G., and Rougier, A. (2001). Decreased epileptic susceptibility correlates with neuropeptide Y overexpression in a model of tolerance to excitotoxicity. Brain Research 894, 209-217.
    Garczynski, S.F., Brown, M.R., Shen, P., Murray, T.F., and Crim, J.W. (2002). Characterization of a functional neuropeptide F receptor from Drosophila melanogaster. Peptides 23, 773-780.
    Hirano, Y., Masuda, T., Naganos, S., Matsuno, M., Ueno, K., Miyashita, T., Horiuchi, J., and Saitoe, M. (2013). Fasting launches CRTC to facilitate long-term memory formation in Drosophila. Science 339, 443-446.
    Huetteroth, W., and Waddell, S. (2011). Hungry Flies Tune to Vinegar. Cell 145, 17-18.
    Krashes, M.J., DasGupta, S., Vreede, A., White, B., Armstrong, J.D., and Waddell, S. (2009). A Neural Circuit Mechanism Integrating Motivational State with Memory Expression in Drosophila. Cell 139, 416-427.
    Lee, G., Bahn, J.H., and Park, J.H. (2006). Sex- and clock-controlled expression of the neuropeptide F gene in Drosophila. Proceedings of the National Academy of Sciences of the United States of America 103, 12580-12585.
    Lee, G., and Park, J.H. (2004). Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster. Genetics 167, 311-323.
    Leung, P.S., Shaw, C., Maule, A.G., Thim, L., Johnston, C.F., and Irvine, G.B. (1992). The primary structure of neuropeptide F (NPF) from the garden snail, Helix aspersa. Regulatory Peptides 41, 71-81.
    Li, Y., Li, J.J., and Yu, L.C. (2002). Anti-nociceptive effect of neuropeptide Y in the nucleus accumbens of rats: an involvement of opioid receptors in the effect. Brain Research 940, 69-78.
    Mao, Z., and Davis, R.L. (2009). Eight different types of dopaminergic neurons innervate the Drosophila mushroom body neuropil: anatomical and physiological heterogeneity. Frontiers in Neural Circuits 3.
    Nässel, D.R. (2002). Neuropeptides in the nervous system of Drosophila and other insects: multiple roles as neuromodulators and neurohormones. Progress in Neurobiology 68, 1-84.
    Robinson, I.M., Ranjan, R., and Schwarz, T.L. (2002). Synaptotagmins I and IV promote transmitter release independently of Ca2+ binding in the C2A domain. Nature 418, 336-340.
    Sahu, A., Kalra, P.S., and Kalra, S.P. (1988). Food deprivation and ingestion induce reciprocal changes in neuropeptide Y concentrations in the paraventricular nucleus. Peptides 9, 83-86.
    Sanacora, G., Kershaw, M., Finkelstein, J.A., and White, J.D. (1990). Increased hypothalamic content of preproneuropeptide Y messenger ribonucleic acid in genetically obese Zucker rats and its regulation by food deprivation. Endocrinology 127, 730-737.
    Sandman, C.A., Strand, F.L., Beckwith, B., Chronwall, B., Flynn, B., and Nachman, R.J. (1999). Neuropeptides: structure and function in biology and behavior (New York Academy of Sciences).
    Stanek, D.M., Pohl, J., Crim, J.W., and Brown, M.R. (2002). Neuropeptide F and its expression in the yellow fever mosquito, Aedes aegypti. Peptides 23, 1367-1378.
    Tatemoto, K., Carlquist, M., and Mutt, V. (1982). Neuropeptide Y--a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature 296, 659-660.
    Tecott, L.H., and Heberlein, U. (1998). Y Do We Drink? Cell 95, 733-735.
    Toates, F.M. (1986). Motivational Systems (Cambridge University Press).
    Vanden Broeck, J. (2001). Neuropeptides and their precursors in the fruitfly, Drosophila melanogaster. Peptides 22, 241-254.
    Wang, J., Ma, X., Yang, J.S., Zheng, X., Zugates, C.T., Lee, C.-H.J., and Lee, T. (2004). Transmembrane/Juxtamembrane Domain-Dependent Dscam Distribution and Function during Mushroom Body Neuronal Morphogenesis. Neuron 43, 663-672.
    Wang, Y., Pu, Y., and Shen, P. (2013). Neuropeptide-gated perception of appetitive olfactory inputs in Drosophila larvae. Cell reports 3, 820-830.
    Wen, T., Parrish, C.A., Xu, D., Wu, Q., and Shen, P. (2005). Drosophila neuropeptide F and its receptor, NPFR1, define a signaling pathway that acutely modulates alcohol sensitivity. Proceedings of the National Academy of Sciences of the United States of America 102, 2141-2146.
    Wu, C.L., Xia, S., Fu, T.F., Wang, H., Chen, Y.H., Leong, D., Chiang, A.S., and Tully, T. (2007). Specific requirement of NMDA receptors for long-term memory consolidation in Drosophila ellipsoid body. Nature neuroscience 10, 1578-1586.
    Wu, Q., Wen, T., Lee, G., Park, J.H., Cai, H.N., and Shen, P. (2003). Developmental Control of Foraging and Social Behavior by the Drosophila Neuropeptide Y-like System. Neuron 39, 147-161.
    Wu, Q., Zhao, Z., and Shen, P. (2005). Regulation of aversion to noxious food by Drosophila neuropeptide Y- and insulin-like systems. Nature neuroscience 8, 1350-1355.
    Xia, S., Miyashita, T., Fu, T.F., Lin, W.Y., Wu, C.L., Pyzocha, L., Lin, I.R., Saitoe, M., Tully, T., and Chiang, A.S. (2005). NMDA Receptors Mediate Olfactory Learning and Memory in Drosophila. Current Biology 15, 603-615.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE