簡易檢索 / 詳目顯示

研究生: 斯提吉
Tandon, Kshitij
論文名稱: 以多體學方法揭示水生生態系統中微生物群落與其功能之變動關係
Deciphering microbial community, function, and their relationships in aquatic ecosystems through multi-omics approaches
指導教授: 湯森林
Tang, Sen-Lin
黃貞祥
Ng, Chen-Siang
口試委員: 江殷儒
Chiang, Yin-Ru
吳育瑋
Wu, Yu-Wei
楊姍樺
Yang, Shan-Hua
吳羽婷
Wu, Yu-Ting
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 167
中文關鍵詞: 水生微生物群落內生桿菌二甲基巰基丙酸二甲基硫空氣微生物群落湖泊微生物群落功能性冗餘解析度依賴
外文關鍵詞: aquatic microbial community, Endozoicomonas, dimethylsulfoniopropionate, dimethylsulfide, airborne bacteria, lake microbial community, functional redundancy, resolution dependency
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 地球上存在著非常多樣的生物,其中微生物佔最大的比例。儘管目前仍有約99%的微生物無法在實驗室的環境中培養,但它們控制著地球上每個生態系統中的生地化循環 (biogeochemical cycles) 。因此,了解微生物的多樣性,分佈,功能以及描述它們與生態系統的關係就變得很重要。在過去的三十年中,非傳統培養方法,諸如高通量測序方法(16S核糖核酸基因擴增子定序,全基因組,單細胞定序)等,徹底改變了我們對微生物多樣性以及微生物生態學的了解。
    本論文共分六章,主要是結合多組學方法 (multi-omics approaches)來做生物資訊分析,進而描述海洋(珊瑚礁)和淡水(湖泊)生態系統中細菌群落的分佈,功能以及它們的相互作用關係。第一章為介紹當前多體學研究背景知識以及對水生微生物生態學中的應用,特別著重於不同生態系統中的細菌群落功能關係 (community functional relationships)。第二章描述從海洋珊瑚(Aropora sp.)中分離到的一種新的內生桿菌物種 (Endozoicomonas) 的全基因體,揭示了這種廣泛分佈在不同的海洋無脊椎動物中的細菌屬 (genus) 的多樣性。再者,第三章是描述開創性地發現內生桿菌在珊瑚硫循環中的作用以及如何幫助珊瑚減輕環境壓力。從全基因體與功能性分析的證據中顯示內生桿菌 (Endozoicomonas acroporae) 具有能夠降解氣候冷化氣體先驅物二甲基巰基丙酸 (dimethylsulfoniopropionate) 產生氣候冷化氣體二甲基硫 (dimethylsulfide)。第四章比較台灣兩個亞高山湖泊鴛鴦湖和翠峰湖的表水與空氣中的細菌群落組成,結果顯示兩個不同營養程度(trophic state)的湖泊具有各自獨立的細菌群落,隨時間的改變細菌群落不具有顯著的變化。但空氣中的細菌群落是多樣性高並且具有時空變化。第五章則藉由超過八週的移地實驗 (reciprocal-transplant experiment) 研究「功能性冗餘假說」(functional redundancy)。利用多體學的分析方法發現水生微生物群系的部分功能冗餘 (partial functional redundancy)中解析程度是影響描繪群落功能關係的主要因素之一 (resolution dependency)。最後,第六章則將每個章節做的簡短總結並闡述水生微生物生態學領域中未來的研究方向與展望。


    Tremendous diversity exists on our planet, with microbes contributing to the largest proportion of total biomass. Although about 99% of the microbes cannot be cultured under laboratory-controlled environment, they govern biogeochemical cycles in every ecosystem on Earth. Thus, it becomes important to understand their diversity, distribution, function, and delineate their relationship with the ecosystem through alternative approaches to culture-dependent methods. In the past three decades, culture-independent methods such as high-throughput sequencing approaches (amplicon, whole-metagenomes, single-cell) have revolutionized our understanding of microbial diversity and microbial ecology.
    This dissertation embodies five chapters and comprises mainly of bioinformatics analyses using multi-omics approaches to delineate the distribution, function, and role of the bacterial community in marine (coral as a model system) and fresh-water (lakes as model systems) ecosystems. The first chapter is a general introduction to multi-omics approaches, their current knowledge, and application in aquatic microbial ecology with a special focus on community functional relationships in different ecosystems. The second chapter describes the genomes of a novel bacterial species from genus Endozoicomonas isolated from sea coral Acropora sp., enriching the diversity of this important bacterial genus which is widespread in different marine invertebrates. Further, the third chapter reports seminal findings on the role of Endozoicomonas in coral sulfur-cycle and stress mitigation, providing the first genomic and functional evidence on the ability of Endozoicomonas acroporae species to metabolize dimethylsulfoniopropionate (DMSP) to dimethylsulfide (DMS), a climate active gas. The fourth chapter describes and compares the bacterial community in surface water and the air above, the two sub-alpine Lakes, Yuan-Yang and Tsuei-Feng, of Taiwan, which revealed different bacterial communities in these lakes, attributed to their different trophic states that remained stable over time. However, the bacterial communities in the air were diverse and had spatial and temporal variance. The fifth chapter investigates the hypothesis of functional redundancy empirically through a first of its kind reciprocal-transplant experiment conducted over six weeks in Yuan-Yang and Tsuei-Feng lakes, utilizing a multitude of omics approaches and reporting partial functional redundancy in aquatic microbiomes. Lastly, the sixth chapter concludes this dissertation with short summaries of each project and prospects of this dissertation giving a glimpse of future directions in the field of aquatic microbial ecology.

    Abstract (Chinese) i Abstract (English) iii Acknowledgements v Table of Contents viii Publications xi List of figures xii List of tables xiv List of abbreviations xv Chapter 1: General introduction 1 1.1 Microbial diversity through marker gene surveys 1 1.2 Cultures to genomics 3 1.3 Metagenomics: microbial community, their genomes, and functions 5 1.4 Shifting paradigm in microbial ecology 8 1.5 Motivations 9 1.6 Aims and outlines of this dissertation 13 Chapter 2: High-quality draft genome of a novel species Endozoicomonas acroporae Acr-14T, isolated from Sea coral 15 2.1 Abstract 15 2.2 Introduction 15 2.3 Materials and methods 16 2.4 Results 17 2.5 Publication 17 Chapter 3: Role of Endozoicomonas acroporae in the coral sulfur cycle 18 3.1 Abstract 18 3.2 Introduction 18 3.3 Materials and methods 21 3.4 Results 30 3.5 Discussion 40 3.6 Conclusion 45 3.7 Publication 45 Chapter 4: Bacterial community in air and water of Tsuei-Feng and Yuan-Yang lake 46 4.1 Abstract 46 4.2 Introduction 46 4.3 Materials and methods 49 4.4 Results 55 4.5 Discussion 62 4.6 Conclusion 64 4.7 Publication 65 Chapter 5: Empirical investigation into functional redundancy of bacterial community 66 5.1 Abstract 66 5.2 Introduction 66 5.3 Materials and methods 70 5.4 Results 77 5.5 Discussion 86 5.6 Conclusion 91 4.7 Publication 92 Chapter 6: Discussion and conclusion 93 6.1 Endozoicomonas acroporae, a novel species which metabolize DMSP to DMS 93 6.2 Shared bacterial community in air and surface water of two Subalpine lakes of Taiwan 94 6.3 Resolution dependent partial functional redundancy in lakes with disparate trophic states as revealed by reciprocal transplant experiment 95 6.4 Future perspectives 96 References 99 Appendix 121 Appendix figures 121 Appendix tables 146

    Ainsworth TD, Krause L, Bridge T, Torda G, Raina JB, Zakrzewski M, et al. The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. ISME J. 2015; 9:2261–2274.
    Alcolombri U, Ben-Dor S, Feldmesser E, Levin Y, Tawfik DS, and Vardi A. Identification of the algal dimethyl sulfide releasing enzyme: a missing link in the marine sulfur cycle. Science. 2015; 348:1466–1469.
    Alcolombri U, Laurino P, Lara-Astiaso P, Vardi A, and Tawfik DS. DddD is a CoA-transferase/lyase producing dimethyl sulfide in the marine environment. Biochemistry. 2014; 53:5473–5475.
    Allen HK, Moe LA, Rodbumrer J, Gaarder A, and Handelsman J. Functional metagenomics reveals diverse β-lactamases in a remote Alaskan soil. ISME J. 2009; 3:243–251.
    Allison SD and Martiny JBH. Resistance, resilience, and redundancy in microbial communities. Proc. Natl. Acad. Sci. USA 2008; 105:11512–11519.
    Almeida A, Mitchell AL, Boland M, Forster SC, Gloor GB, Tarkowska A, et al. A new genomic blueprint of the human gut microbiota. Nature. 2019; 568:499-504.
    Altschul SF, Gish W, Miller W, Myers EW, and Lipman DJ. Basic local alignment search tool. J. Mol. Biol. 1990; 215:403–410.
    Apprill A, Hughen K, and Mincer T. Major similarities in the bacterial communities associated with lesioned and healthy Fungiidae corals. Environ. Microbiol. 2013; 15:2063–2072.
    Ariya AP and Marc A. New Directions: The role of bioaerosols in atmospheric chemistry and physics. Atmos. Environ. 2004; 38:1231–1232.
    Aziz RK, Bartels D, Best DD, DeJogh M, Disz T, Edwards RA, et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics. 2008; 9:75.
    Baatar B, Chiang PW, Rogozin YD, Wu YT, Tseng CH, Yang CY, et al. Bacterial Communities of Three Saline Meromictic Lakes in Central Asia. PLoS One. 2016; 11:e0150847.
    Baho DL, Peter H, and Tranvik LJ. Resistance and resilience of microbial communities - Temporal and spatial insurance against perturbations. Environ. Microbiol. 2012; 14: 2283–2292.
    Bahram M, Hildebrand F, Forslund SK, and Anderson JL, Soudzilovskaia NA, Bodegom PM, et al. Structure and function of the global topsoil microbiome. Nature. 2018; 560:233–237.
    Bayer T, Arif C, Ferrier-Pagès C, Zoccola D, Aranda M, and Voolstra CR. Bacteria of the genus Endozoicomonas dominate the microbiome of the Mediterranean gorgonian coral Eunicella cavolini. Mar. Ecol. Prog. Ser. 2013a; 479:75–84.

    Bayer T, Neave MJ, Alsheikh-Hussain A, Aranda M, Yum LK, Mincer T, et al. The microbiome of the Red Sea coral Stylophora pistillata is dominated by tissue-associated Endozoicomonas bacteria. Appl. Environ. Microbiol. 2013b; 79:4759–4762.
    Bentley DR. Whole-genome Re-sequencing. Curr. Opin. Genet. Dev. 2006; 16:545–552.
    Berdjeb L, Ghiglione JF, Domaizon I, and Jacquet S. A 2-year assessment of the main environmental factors driving the free-living bacterial community structure in Lake Bourget (France). Microb. Ecol. 2011; 61:941–954.
    Berlemont R, Delsaute M, Pipers D, D’Amico S, Feller G, Galleni M, et al. Insights into bacterial cellulose biosynthesis by functional metagenomics on Antarctic soil samples. ISME J. 2009; 3:1070–1081.
    Blattner FR, Plunkett III G, Bloch CA, Perna NT, Burland V, Riley M, et al. The complete genome sequence of Escherichia coli K-12. Science. 1997; 277:1453–1462.
    Blaustein RA, McFarland AG, Maamar SB, Lopez A, Castro-Wallace S, and Hartmann EM. Pangenomic approach to understanding microbial adaptations within a model built environment, the International Space Station, relative to human host and soil. mSystems. 2019; 4:e00281–18.
    Bottos EM, Woo AC, Zawar-Reza P, Pointing SB, and Cary SC. Airborne bacterial populations above desert soils of the McMurdo dry valleys. Microb. Ecol. 2014; 67:120–128.
    Bourne BG and Munn CB. Diversity of bacteria associated with the coral Pocillopora damicornis from the Great Barrier Reef. Environ. Microbiol. 2005; 7:1162–1174.
    Bourne DG, Iida Y, Uthicke S, and Smith-Keune C. Changes in coral-associated microbial communities during a bleaching event. ISME J. 2008; 2:350–63.
    Bourne DG, Morrow KM, and Webster NS. Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Annu. Rev. Microbiol. 2016; 70:317–40.
    Bovallius A, Bucht B, Roffey R, and Anäs P. Long-range air transmission of bacteria. Appl. Environ. Microbiol. 1978; 35:1231–1232.
    Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 2017; 35:725–31.
    Bowers RM, Lauber CL, Wiedinmyer C, Hamady M, Hallar AG, Fall R, et al. Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei. Appl. Environ. Microbiol. 2009; 75:5121–5130.
    Brockhurst MA, Harrison E, Hall PJ, Richards T, McNally A, and MacLean C. The Ecology and Evolution of Pangenomes. Curr. Biol. 2019; 29:R1094-1103.
    Broadent AD and Jones GB. DMS and DMSP in mucus ropes, coral mucus, surface films and sediment pore waters from coral reefs in the Great Barrier Reef. Mar. Freshw. Res. 2004; 55:849–855.

    Broadent AD, Jones GB, and Jones RJ. DMSP in Corals and Benthic Algae from the Great Barrier Reef. Estuar. Coast Shelf Sci. 2002; 55:547–555.
    Brown CT, Hug LA, Thomas BC, Sharon I, Castelle CJ, Singh A, et al. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature. 2015; 532:208-211.
    Buchfink B, Xie C, and Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat. Methods. 2014; 12:59–60.
    Bullock HA, Luo HW, and Whitman WB. Evolution of dimethylsulfoniopropionate metabolism in marine phytoplankton and bacteria. Front. Microbiol. 2017; 8:637.
    Burland TG. DNASTAR’s Lasergene sequence analysis software. Methods Mol. Biol. 2000; 132:71–91.
    Cha S, Srinivasan S, Jang HJ, Lee D, Lim S, Kim KS, et al. Metagenomic analysis of airborne bacterial community and diversity in Seoul, Korea, during December 2014, Asian dust event. PLoS One. 2017; 12: e0170693.
    Cheaib B, Boulch ML, Mercier PL, and Derome N. Taxon-function decoupling as an adaptive signature of Lake Microbial metacommunities under a chronic polymetallic pollution gradient. Front. Microbiol. 2018; 9:1–17.
    Chen CP, Tseng CH, Chen CA, and Tang SL. The dynamics of microbial partnerships in the coral Isopora palifera. ISME J. 2011; 5:728–740.
    Clarke KR. Non-parametric multivariate analyses of changes in community structure. Austral. Ecol. 1993; 18:117–143.
    Colatriano D, Tran PQ, Gueguen C, Williams WJ, Lovejoy C, and Walsh DA. Genomic evidence for the degradation of terrestrial organic matter by pelagic Arctic ocean Chloroflexi bacterial. Commun. Biol. 2018; 1:90.
    Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, et al. Ribosomal Database Project: Data and Tolls for high throughput rRNA analysis. Nucleic Acids Res. 2014; 42:D633–642.
    Comte J, Fauteux L, and Del Giorgio, PA. Links between metabolic plasticity and functional redundancy in freshwater bacterioplankton communities. Front. Microbiol. 2013; 4:1–11.
    Comte J, Lindström ES, Eiler A, and Langenheder S. Can marine bacteria be recruited from freshwater sources and the air? ISME J. 2014; 8:2423–2430.
    Correa H, Haltli B, Duque C, and Kerr R. Bacterial communities of the gorgonian octocoral Pseudopterogorgia elisabethae. Microb. Ecol. 2013; 66:972–985.
    Cunliffe M, Whitley AS, Newbold L, Oliver A, Schafer H, and Murrell JC. Comparison of bacterioneuston and bacterioplankton dynamics during a phytoplankton bloom in a fjord mesocosm. Appl. Environ. Microbiol. 2009; 75:7173–7181.
    Cunliffe M, Upstill-Goddard RC, and Murrell JC. Microbiology of aquatic surface microlayers. FEMS Microbiol. Rev. 2011; 35:233–246.

    Curson ARJ, Rogers R, Todd JD, Brearley CA, and Johnston AWB. Molecular genetic analysis of a dimethylsulfoniopropionate lyase that liberates the climate-changing gas dimethylsulfide in several marine α-proteobacteria and Rhodobacter spharoides. Environ. Microbiol. 2008; 10:757–67.
    Curson ARJ, Todd JB, Sullivan MJ, and Johnston AWB. Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and genes. Nat. Rev. Microbiol. 2011; 9:849–859.
    Debroas D, Humber JF, Enault F, Bronner G, Faubladier M, and Cornillot E. Metagenomic approach studying the taxonomic and functional diversity of the bacterial community in a mesotrophic lake (Lac du Bourget - France). Environ. Microbiol. 2009; 11:2412–2424.
    Del’Duca A, Cesar DE, and Abreu PC. Bacterial community of pond’s water, sediment and in the guts of tilapia (Oreochromis niloticus) juveniles characterized by fluorescent in situ hybridization technique. Aquatic Res. 2015; 46:707–715.
    Delgado-Baquerizo M, Giaramida L, Reich PB, Khachane AN, Hamonts K, Edwards C, et al. Lack of functional redundancy in the relationship between microbial diversity and ecosystem functioning. J. Ecol. 2016; 104: 936–946.
    Delort AM, Vaïtilingom M, Amato P, Sancelme M, Parazols M, Mailhot G, et al. A short overview of the microbial population in clouds: Potential roles in atmospheric chemistry and nucleation processes. Atmos. Res. 2010; 98:249–260.
    Deng X, Phillippy AM, Li Z, Salzberg SL, and Zhang W. Probing the pan-genome of Listeria monocytogenes: new insights into intraspecific niche expansion and genomic diversification. BMC Genomics. 2010; 11:500.
    DeSantiz TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ. Microbiol. 2006; 72:5069–5072.
    Deschaseaux ESM, Jones GB, Deseo MA, Shepherd KM, Kiene RP, and Swan HB. Effects of environmental factors on dimethylated sulfur compounds and their potential role in the antioxidant system of the coral holobiont. Limnol. Oceanogr. 2014; 59:758–768.
    Ding JY, Shiu JH, Chen WM, Chiang YR, and Tang SL. 2016. Genomic insight into the host-endosymbiont relationship of Endozoicomonas montiporae CL-33T with its coral host. Front. Microbiol. 7:251.
    Dinsdale EA, Edwards RA, Hall D, Angle F, Breibart M, Brulc JM, et al. Functional Metagenomic profiling of nine biomes. Nature. 2008; 452:629–632.
    Doolittle WF and Zhaxybayeva O. On the origin of prokaryotic species. Genome Res. 2009; 19:744–756.
    Downs CA, McDougall KE, Woodley CM, Fauth JE, Richmond RH, Kushmaro A, et al. Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching. PLoS One. 2013; 8:e77173.

    Dufresne A, Ostrowski M, Scanlan DJ, Garczarek L, Mazard S, Palenik BP, et al. Unraveling the genomic mosaics of a ubiquitous genus of marine cyanobacteria. Genome Biol. 2008; 9:R90.
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004; 32:1792–1797.
    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010; 26:2460–2461.
    Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods. 2013; 10:996–998.
    Eichinger V, Nussbaumer T, Platzer A, Jehl MA, Arnold R, Rattei T, et al. EffectiveDB- updates and novel feature annotation of bacterial secreted proteins and Type III, IV, VI secretion systems. Nucleic Acids Res. 2016; 44:D669–74.
    Eiler, A. Evidence for the ubiquity of mixotrophic bacteria in the upper ocean: Implications and consequences. Appl. Environ. Microbiol. 2006; 72:7431–7437.
    El-Gebali S, Misry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019; 47:427–32.
    Elke Jaspers and Jorg Overmann. Ecological Significance of Microdiversity: Identical 16S rRNA Gene Sequences Can Be Found in Bacteria with Highly Divergent Genomes and Ecophysiologies. Appl. Environ. Microbiol. 2004; 70: 4831–4839.
    Emerson D, Field Ek, Chertkov O, Davenport KW, Goodwin L, Munk C, et al. Comparative genomics of freshwater Fe-oxidizing bacteria: Implications for physiology, ecology, and systematics. Front. Microbiol. 2013; 4:254.
    Fahlgren C, Hagstrom A, Nilsson D, and Zweifel UL. Annual variations in the diversity, viability, and origin of airborne bacteria. Appl. Environ. Microbiol. 2010; 76:3015–3025.
    Falkowski PG, Fenchel T, and Delong EF. The microbial engines that drive earth’s biogeochemical cycles. Science. 2008; 320:1034–1039.
    Fernandez AS, Hashsham SA, Dollhopf SL, Raskin L, Glagoleva O, Dazzo FB, et al. Flexible community structure correlates with stable community function in methanogenic bioreactor communities perturbed by glucose. Appl. Environ. Microbiol. 2000; 66:4058–4067.
    Fernandez-Gomez B, Richter M, Schuler M, Pinhassi J, Acinas SG, Gonzalez JM, et al. Ecology of marine Bacteroidetes: A comparative genomics approach. ISME J. 2013; 7:1026-1037.
    Fernstrom A and Goldblatt M. Aerobiology and its role in the transmission of infectious diseases. J. Pathog. 2013; 13:493960.
    Ferrer LM and Szmant AM. Nutrient regeneration by the endolithic community in coral skeletons. In: Choat JH, Barnes D, Borowitzka MA, Coll JC, Davies PJ, Flood P, et al. editors. Proceedings of the 6th International Coral Reef Symposium Townsville, Australia: Contributed Papers. Vol. 1;1988. p. 1–4.
    Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc. Natl. Acad. Sci. USA. 2012; 109:21390–21395.
    Fierer N, Ladau J, Clemente JC, Leff JW, Owens SM, Pollard KS, et al. Reconstructing the Microbial Diversity and Function of Pre-Agricultural Tallgrass Prairie Soils in the United States. Science. 2013; 342:621–624.
    Findlay SEG, Sinsabaugh RL, Sobczak WV, and Hoostal M. Metabolic and structural response of hyporheic microbial communities to variations in supply of dissolved organic matter. Limnol. Oceanogr. 2003; 48:1608–1617.
    Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995; 269:496–512.
    Forget NL and Kim JS. 2013. Free-living bacterial communities associated with tubeworm (Ridgeia piscesae) aggregations in contrasting diffuse flow hydrothermal vent habitats at the Main Endeavour Field, Juan de Fuca Ridge. Microbiologyopen. 2013; 2:259–275.
    Fortunato CS and Crump BC. Bacterioplankton community variation across river to ocean environmental gradients. Microb. Ecol. 2011; 62:374–382.
    Franzosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser HJ, Reinker S, et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol. 2019; 4:293–305.
    Fuhrman JA, Cram JA, and Needham DM. Marine microbial community dynamics and their ecological interpretation. Nat. Rev. Microbiol. 2015; 13:133–146.
    Galand PE, Pereira O, Hochart C, Auguet JC, and Debroas D. A strong link between marine microbial community composition and function challenges the idea of functional redundancy. ISME J. 2018; 12:2470–2478.
    Garren M, Son K, Raina JB, Rusconi R, Menolascina F, Shapiro OH, et al. A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed corals. ISME J. 2014; 8:999–1007.
    Gasol JM, Comerma M, García JC, and Armengol J. A transplant experiment to identify the factors controlling bacterial abundance, activity, production, and community composition in a eutrophic canyon-shaped reservoir. Limnol. Oceanogr. 2002; 47:62–77.
    Ghai R, Rodriguez-Valera F, McMohan KD, Toyama D, Rinke R, Cristina Souza de Oliveira T, Garcia JW, et al. Metagenomics of the water column in the pristine upper course of the Amazon River. PLoS One. 2011; 6:e23785.
    Ghylin TW, Garcia SL, Moya F, Oyserman BO, Schwientek P, Forest KT, et al. Comparative single-cell genomics reveals potential ecological niches for the freshwater acI Actinobacteria lineage. ISME J. 2014; 8:2503–2516.

    Giller PS, Hillebrand H, Berninger UG, Gessner MO, Hawkins S, Inchausti P, et al. Biodiversity effects on ecosystem functioning: Emerging issues and their experimental test in aquatic environments. Oikos 2014; 104:423–436.
    Giovannoni SJ. SAR11 bacteria: The most abundant plankton in the Oceans. Ann. Rev. Mar. Sci. 2017; 9:231–255.
    Glasl B, Robbins S, Frade PR, Marangon E, Laffy PW, Bourne DG, et al. Comparative genome-centric analysis reveals seasonal variation in the function of coral reef microbiomes. ISME J. 2020; 14:1435–1450.
    Gong J, Qing Y, Guo X, and Warren A. “Candidatus Sonnebornia yantaiensis”, a member of candidate division OD1, as intracellular bacteria of the ciliated protist Paramecium bursaria (Ciliophora, Oligohymenophorea) Syst. Appl. Microbiol. 2014; 37:35–41.
    Graham EB, Knelman JE, Schindlbacher A, Siciliano S, Breulmann M, Yannarell A, et al. Microbes as engines of ecosystem function: When does community structure enhance predictions of ecosystem processes? Front. Microbiol. 2016; 7:1–10.
    Griffiths BS, Kuan HL, Ritz K, Glover LA, McCaig AE, and Fenwick C. The relationship between microbial community structure and functional stability, tested experimentally in an upland pasture soil. Microb. Ecol. 2004; 47:104–113.
    Grohmann E, Christie PJ, Waksman G, and Backert S. Type IV secretion in Gram-negative and Gram-positive bacteria. Mol. Microbiol. 2018; 107:455–471.
    Grossart HP, Massana R, McMohan KD, and Walsh DA. Linking metagenomics to aquatic microbial ecology and biogeochemical cycles. Limnol. Oceanogr. 2020; 65:S2–S20.
    Hahn MW, Lünsdorf H, Wu Q, Schauer M, Hofle MG, Boenigk J, et al. Isolation of novel ultramicrobacteria classified as actinobacteria from five freshwater habitats in Europe and Asia. Appl. Environ. Microbiol. 2003; 69:1442–1451.
    Hahn MW, Scheuerl T, Jezberová J, Koll U, Jezbera J, Simek K, et al. The passive yet successful way of planktonic life: genomic and experimental analysis of the ecology of a free-living polynucleobacter population. PLoS One. 2012; 7: e32772.
    Hallam SJ, Konstantinidis KT, Putnam N, Schleper C, Watanabe Y-I, Sugahara J, et al. Genomic analysis of the uncultivated marine Crenarchaeote cenarcheum symbiosum. Proc. Natl. Acad. Sci. USA. 2006; 103:18296–18301.
    Handelsman J, Rondon MR, Brady SF, Clardy J, and Goodman RM. Molecular biological access to the chemistry of unknown soil microbes: A new frontier for natural products. Chem. Biol. 1998; 5:R245–249.
    Haydon TD, Seymour JR, and Suggett DJ. Soft corals are significant DMSP producers in tropical and temperate reefs. Mar. Biol. 2018; 165:109.
    He S, Stevens SLR, Chan LK, Bertilsson S, Galvina del Rio T, Tringe SG, et al. Ecophysiology of freshwater Verrucomicrobia inferred from Metagenome-Assembled Genomes. mSphere. 2017; 2:e00277–17.
    Herath D, Tang SL, Tandon K, Ackland D, and Halgamuge SK. CoMet: a workflow using contig coverage and composition for binning a metagenomic sample with high precision. BMC Bioinformatics. 2017; 18:571.
    Herndl GJ, Kaltenbok E, and Muller-Niklas G. Dialysis bag incubation as a non radiolabeling technique to estimate bacterioplankton production in situ. Handbook of Methods in Aquatic Microbial Ecology. 1993; 495–503. Lewis Publisher, Florida, USA.
    Hervàs A, Camarero L, Reche I, and Casamayor CO. Viability and potential for immigration of airborne bacteria from Africa that reach high mountain lakes in Europe. Environ. Microbiol. 2009; 11:1612–1623.
    Hou D, Huang Z, Zeng S, Liu J, Wei D, Deng X, et al. Environmental factors shape water microbial community structure and function in shrimp cultural enclosure ecosystems. Front. Microbiol. 2017; 8:1–12.
    Howard EC, Henriksen JR, Buchan A, Reisch CR, Burgmann H, Welsh R, et al. Bacterial taxa that limit sulfur flux from the ocean. Science. 2006; 314:649–652.
    Howat AM, Voollmers J, Taubert M, Grob C, Dixon JL, Todd JD, et al. Comparative genomics and mutational analysis reveals a novel XoXF-utilizing Methylotroph in the Roseobacter group isolated from the marine environment. Front. Microbiol. 2018; 9:766.
    Huelsenbeck JP and Ronquist F. MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics. 2001; 8:754–755.
    Hug, LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, et al. A new view of the tree of life. Nat. Microbiol. 2016; 1:16048.
    Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, and Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010; 11:119.
    Hyun DW, Shin NR, Kim MS, Oh SJ, Kim PS, Whon TW, et al. Endozoicomonas atrinae sp. nov., isolated from the intestine of a comb pen shell Atrina pectinata. Int. J. Syst. Evol. Microbiol. 2014; 64:2312–2318
    Iliev I, Yahubyan G, Marhova M, Apostolova E, Gozmanova M, Gecheva G, et al. Metagenomic profiling of the microbial freshwater communities in two Bulgarian reservoirs. J. Basic Microbiol. 2017; 57:669–679.
    International Human genome consortium, 2001 Initial sequencing and analysis of the human genome.
    Jensen S, Duperron S, Birkeland NK, and Hovland M. 2010. Intracellular Oceanospirillales bacteria inhabit gills of Acesta bivalves. FEMS Microbiol. Ecol. 2010; 74:523–533
    Jessen C, Villa Lizcano JF, Bayer T, Roder C, Aranda M, Wild C, et al. In-situ effects of eutrophication and overfishing on physiology and bacterial diversity of the Red Sea coral Acropora hemprichii. PLoS One 2013; 8:e62091.

    Johnston AWB, Todd JD, Sun L, Nikolaidou-Katsaridou MN, Curson ARJ, and Rogers R. Molecular diversity of bacterial production of the climate active gas, dimethylsulphide, a molecule that impinges on local and global symbioses. J. Exp. Bot. 2008; 59:1059–1067.
    Jones SE, Newton RJ, and McMahon KD. Evidence for structuring of bacterial community composition by organic carbon source in temperate lakes. Environ. Microbiol. 2009; 11:2463–2472.
    Jorgensen SL, Hannisdal B, Lanzén A, Baumberger T, Flesland K, Fonseca R, et al. Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge. Proc. Natl. Acad. Sci. USA. 2012; 109:2846–2855.
    Judd KE, Crump BC, and Kling GW. Variation in dissolved organic matter controls bacterial production and community composition. Ecology. 2006; 87:2068–2079.
    Jurburg SD and Salles JF. Functional Redundancy and Ecosystem Function- The Soil Microbiota as a Case Study. Ecosystems-Linking Strucuture and Function. 2015; p29-42. InTech Open Science. Rijeka.
    Kaevska K, Videnska P, Sedlar K, and Slana I. Seasonal changes in microbial community composition in river water studied using 454-pyrosequencing. SpringerPlus. 2016; 5:1–8.
    Kalyaanamoorthy S, Minh BQ, Wong TKF, Haeseler von A, and Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. methods. 2017; 14:587–589.
    Kandlikar GS, Gold ZJ, Cowen MC, Meyer RS, Freise AC, Kraft NJB, et al. Ranacapa: An R package and shiny web app to explore environmental DNA data with exploratory statistics and interactive visualizations. F1000Research. 2018; 7:1–19.
    Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 2016; 428:726–731.
    Kang DD, Froula J, Egan R and Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015; 3:e1165.
    Kenkel C, Meyer E, and Matz M. Gene expression under chronic heat stress in populations of the mustard hill coral (Porites asteroids) from different thermal environments. Mol. Ecol. 2013; 22:4322–4324.
    Kiene RP, Linn LJ, and Burton JA. New and important roles for DMSP in marine microbial communities. J. Sea Res. 2000; 43:209–224.
    Kim M, Oh HS, Park SC, and Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 2014; 64:346–351.
    Kimura N, Liu WC, Tsai JW, Chiu CY, Kratz TK, Tai A. Contribution of extreme meteorological forcing to vertical mixing in a small, shallow subtropical lake. J. Limnol. 2017; 76:116–128.
    Kirchman DL, Dittel AI, Findlay SEG, and Fischer D. Changes in bacterial activity and community structure in response to dissolved organic matter in the Hudson River, New York. Aquat. Microb. Ecol. 2004; 35:243–257.
    Klindworth A, Prusesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and Next-Generation Sequencing- based diversity studies. Nucleic Acids Res. 2013; 41:e1.
    Kondrashov FA, Koonin EV, Morgunov IG, Finogenova TV, and Kondrashova MN. Evolution of glyoxylate cycle enzymes in Metazoa: evidence of multiple horizontal transfer events and pseudogene formation. Biol. Direct. 2006; 1:31.
    Kooperman N, Ben-Dov E, Kramarsky-Winter E, Barak Z, and Kushmaro A. Coral mucus-associated bacterial communities from natural and aquarium environments. FEMS Microbiol. Lett. 2007; 276:106–13.
    Kritzberg ES, Langenheder S, and Lindström ES. Influence of dissolved organic matter source on lake bacterioplankton structure and function - Implications for seasonal dynamics of community composition. FEMS Microbiol. Ecol. 2006; 56:406–417.
    Kumar R, Verma H, Haider S, Bajaj A, Sood U, Ponnusamy K, et al. Comparative genomic analysis reveals habitat-specific genes and regulatory hubs within the genus Novosphingobium. mSystems. 2017; 2:e00020-17.
    Kumar S, Stecher G, and Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016; 33:1870–1874.
    Kuo CH, Moran AN, and Ochman H. The consequences of genetic drift for bacterial genome complexity. Genome Res. 2009; 19:1450–1454.
    Kurahashi M and Yokota A. Endozoicomonas elysicola gen. nov., sp. nov., a γ-proteobacterium isolated from the sea slug Elysia ornata. Syst. Appl. Microbiol. 2007; 30:202–206.
    Kwak MJ, Kong HG, Choi K, Kwon SK, Song JY, Lee P, et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat. Biotechnol. 2018; 36:1100–1109.
    Kwan JC, Donia MS, Han AW, Hirose E, Haygood MG, and Schmidt EW. Genome streamlining and chemical defense in a coral reef symbiosis. Proc. Natl. Acad. Sci. USA. 2012; 109:20655–60.
    LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Bio. 2018; 28:2570–2580.
    Landry Z, Swan Bk, Herndl GJ, Stepanauskas R, and Giovannoni SJ. SAR202 genome from the dark ocean predict pathways for the oxidation of recalcitrant dissolved organic matter. mBio. 2017; 8:e00413–17.
    Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, and Pace NR. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. USA. 1985; 82:6955–6959.
    Langenheder S, Lindström ES, and Tranvik LJ. Weak coupling between community composition and functioning of aquatic bacteria. Limnol. Oceanogr. 2005; 50:957–967.
    Langenheder S, Lindström, ES, and Tranvik LJ. Structure and function of bacterial communities emerging from different sources under identical conditions. Appl. Environ. Microbiol. 2006; 72: 212–220.
    Lee STM, Davy SK, Tang SL, Fan TY, and Kench PS. Successive shifts in the microbial community of the surface mucus layer and tissue of the coral Acropora muricata under thermal stress. FEMS Microbiol. Ecol. 2015; 91:fiv142.
    Lee STM, Davy SK, Tang SL, and Kench PS. Mucus sugar content shapes the bacterial community structure in thermally stressed Acropora muricata. Front. Microbiol. 2016; 7:1371.
    Lee STM, Davy SK, Tang SL, and Kench PS. Water flow buffers shifts in bacterial structure in heat-stressed Acropora muricata. Sci. Rep. 2017; 7:43600.
    Lema KA, Willis BL, and Bourne DG. Amplicon pyrosequencing reveals spatial and temporal consistency in diazotroph assemblages of the Acropora millepora microbiome. Environ. Microbiol. 2014; 16:3345–3359.
    Lemlfort M, Parks D, Woodcroft BJ, Dennis P, Hugenholtz P, and Tyson GW. GroopM: an automated tool for the recovery of population genomes from related metagenomes. PeerJ. 2014; 2:e603.
    Lesser MP. Oxidative stress in marine environments: biochemistry and physiological ecology. Annu. Rev. Physiol. 2006; 68:253–78.
    Lesser MP, and Jarett JK. Culture-dependent and culture-independent analyses reveal no prokaryotic community shifts or recovery of Serratia marcescens in Acropora palmata with white pox disease. FEMS Microbiol. Ecol. 2014; 88:457–467.
    Letunic I and Bork P. Interactive Tree of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019; 47:256–259.
    Lima-Mendez G, Faust K, Henry N, Decelle J, Colin S, Carcillo F, et al. Determinants of community structure in the grobal plankton interactome. Science. 2015; 348:1265073.
    Lin J. Divergence Measures Based on the Shannon Entropy. IEEE Trans. Inf. Theory. 1991; 37: 145–151.
    Linz AM, Crary BC, Shade A, Owens S, Gilbert JA, Knight R, et al. Bacterial community composition and dynamics spanning five years in freshwater bog lakes. mSphere. 2017; 2: e00169–17.
    Livermore JA, Emrich JS, Tan J and Jones SE. Freshwater bacterial lifestyles inferred from comparative genomics. Environ. Microbiol. 2014; 16:746-758.
    Llirós M, Inceoğlu Ö, García-Armisen T, Anzil A, Leporcq B, Pigneur LM, et al. Bacterial community composition in three freshwater reservoirs of different alkalinity and trophic status. PLoS One. 2014; 9:e116145.
    Louca S, Parfrey LW, and Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016a; 353:1272–1277.
    Louca S, Jacques SMS, Pires APF, Leal JS, Srivastava DS, Parfrey LW, et al. High taxonomic variability despite stable functional structure across microbial communities. Nat. Ecol. Evol. 2016b; 5:15.
    Louca S, Jacques SMS, Pires AP, Leal JS, Gonzalez AL, Doebeli M, et al. Functional structure of the bromeliad tank microbiome is strongly shaped by local geochemical conditions. Environ. Microbiol. 2017; 19:3132–3151.
    Louca S, Polz MA, Mazel F, Albright MBN, Huber JA, O’Connor MI, et al. Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2018; 2:936-943.
    Machado H and Graham L. Comparative genomics reveals high genomic diversity in the genus Photobacterium. Front. Microbiol. 2017; 8:1024.
    Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K, Studer M, et al. cluster: Cluster Analysis Basics and Extensions. 2019 R package version 2.1.0.
    Magoč T and Salzberg SL. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011; 27:2957–2963.
    Maharjan R, Seeto S, Notley-McRobb L, and Ferenci T. Clonal adaptive radiation in a constant environment. Science. 2006; 313:514–517.
    Marchler-Bauer A and Bryant SH. CD-Search: protein domain annotations on the fly. Nucleic Acids Res. 2005; 32:W327–W331.
    Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 2015; 43:D222–D226.
    Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, et al. Genome sequencing of microfabricated high-density picolitre reactors. Nature. 2005; 15:376–380.
    Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 2011; 17:10–12.
    Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhramn JA, Green JL, et al. Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 2006; 4:102–112.
    McCutcheon JP and Moran NA. Extreme genome reduction in symbiotic bacteria. Nat. Rev. Microbiol. 2011; 10:13–36.
    McMurdie PJ and Holmes S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS One. 2013; 8:e61217.
    Mehrshad M, Rodiguez-Valera F, Ali Amoozegar M, Lopez-Garcia P, and Ghai R. The enigmatic SAR202 cluster up close: shedding light on a globally distributed dark ocean lineage involved in sulfur cycling. ISME J. 2018; 12:655–668.
    Meier-Kolthof JP, Klenk HP, and Goker M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int. J. Syst. Microbiol. 2014; 64:325–56.
    Meyer AF, Lipson DA, Martín AP, Schadt CW, and Schmidt SK. Molecular and Metabolic Characterization of Cold-Tolerant Alpine Soil Pseudomonas Sensu Stricto. Appl. Environ. Microbiol. 2004; 70:483–489.
    Mooshammer M, Hofhansl F, Frank AH, Wanek W, Hammerle L, Leitner S, et al. Decoupling of microbial carbon, nitrogen, and phosphorus cycling in response to extreme temperature events. Sci. Adv. 2017; 3:1–14.
    Moran MA. The Global Ocean Microbiome. Science. 2015; 350;aac8455.
    Moran MA, Buchan A, Gonzalez JM, Heidelberg JF, Whitman WB, Kiene RP, et al. Genome sequence of Silibacter pomeroyi reveals adaptation to the marine environment. Nature. 2004; 432:910–913.
    Moran NA, McCutcheon JP, and Nakabachi A. Genomics and evolution of heritable bacterial symbionts. Annu. Rev. Genet. 2008; 42:165–190.
    Morris RM, Rappe MS, Urbach E, Connon SA, and Giovanni SJ. Prevalence of the Chloroflexi-related SAR202 bacterioplankton cluster throughout the mesopelagic zone and deep ocean. Appl. Environ. Microbiol. 2004; 70:2836–2842.
    Morris CE, Sands DC, Bardin M, Jaenicke R, Vogel B, Leyronas C, et al. Microbiology and atmospheric processes: research challenges concerning the impact of airborne micro-organisms on the atmosphere and climate. Biogeosciences. 2011; 8:17–25.
    Moya A and Ferrer M. Functional Redundancy-Induced Stability of Gut Microbiota Subjected to Disturbance. Trends Microbiol. 2016; 24:402–413.
    Nawrocki EP. Annotating functional RNAs in genomes using Infernal. Methods Mol. Biol. 2014; 1097:163–167.
    Nawrocki EP and Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics. 2013; 29:2933–2935.
    Neave MJ, Apprill A, Ferrier-Pagès C, and Voolstra CR. Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas. Appl. Microbiol. Biotechnol. 2016; 100:8315–8324.
    Neave MJ, Michell CT, Apprill A, and Voolstra CR. Whole-genome sequences of three symbiotic Endozoicomonas strains. Genome Announc. 2014; 2:e00802–14.
    Neave MJ, Michell CT, Apprill A, and Voolstra CR. Endozoicomonas genomes reveal functional adaptation and plasticity in bacterial strains symbiotically associated with diverse marine hosts. Sci. Rep. 2017; 7:40579.
    Neave MJ, Rachmawati R, Xun L, Michell CT, Bourne DG, Apprill A, et al. Differential specificity between closely related corals and abundant Endozoicomonas endosymbionts across global scales. ISME J. 2017; 11:186–200.
    Nelson CE. Phenology of high-elevation pelagic bacteria: The roles of meteorologic variability, catchment inputs and thermal stratification in structuring communities. ISME J. 2009; 3:13–30.
    Newton RJ, Kent AD, Triplett EW, and McMahon KD. Microbial community dynamics in a humic lake: differential persistence of common freshwater phylotypes. Environ. Microbiol. 2006; 8:956–970.
    Newton RJ, Jones SE, Eiler A, McMahon KD, and Bertilsson S. A guide to the natural history of freshwater lake bacteria. Microbiol. Mol. Bio.l Rev. 2011; 75:14–49.
    Newton RJ and Mcmahon KD. Seasonal differences in bacterial community composition following nutrient additions in a eutrophic lake. Environ. Microbiol. 2011; 13:887–899.
    Nguyen LT, Schmidt HA, Haeseler von A, and Minh BQ. IQ-Tree: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Bio. Evol. 2015; 32:268–274.
    Nishijima M, Adachi K, Katsuta A, Shizuri Y, and Yamasato K. Endozoicomonas numazuensis sp. nov., a gammaproteobacterium isolated from marine sponges, and emended description of the genus Endozoicomonas Kurahashi and Yokota 2007. Int. J. Syst. Evol. Microbiol. 2013; 63:709–714.
    O’Brien P, Smith HA, Fallon S, Fabricus K, Willis BT, Morrow KM, et al. Elevated CO2 has little influence on the bacterial communities associated with the pH-tolerant coral, massive Porites spp. Front. Microbiol. 2018; 9:2621.
    Okansen, J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, et al. vegan: Community Ecology Package: Ordination, Diversity and Dissimilarities. R package 2.5-5 2011.
    Orland C, Emilson EJS, Basiliko N, Myktczuk NCS, Gunn JM, and Tanentzap AJ. Microbiome functioning depends on individual and interactive effects of the environment and community structure. ISME J. 2019; 13:1–11.
    Pace NR. Mapping the Tree of Life: Progress and Prospects. Microbiol. Mol. Biol. Rev. 2009; 73:565-576.
    Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015; 31:3691–3693.
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, and Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015; 25:1043–1055.
    Parks DH, Rinke C, Chuvochina M, Chaumeil PA, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8,000 metagenome assembled genomes substantially expands the tree of life. Nat. Microbiol. 2017; 2:1533–1542.
    Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 2018; 36:996–1004.
    Parks DH, Chuvochina M, Chaumeil PA, Rinke C, Mussig AJ, and Hugenholtz. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat. Biotechnol. 2020; doi: 10.1038/s41587-020-0501-8.
    Patel RK and Jain M. NGS QC toolkit: a toolkit for quality control of next generation sequencing data. PLoS One 2012; 7:e30619
    Perna NT, Plunket III G, Burland V, Mau B, Glasner JD, Rose DJ, et al. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature. 2001; 409;529–533.
    Pernthaler J, Glockner FO, Unterholzner S, Alfreider A, Psenner R, and Amann R. Seasonal community and population dynamics of pelagic bacteria and archaea in a high mountain lake. Appl. Environ. Microbiol. 1998; 64:4299–4306.
    Pernthaler J, Posch T, Simek K, Vrba J, Pernthaler A, Glockner FO, et al. Predator-specific enrichment of actinobacteria from a cosmopolitan freshwater clade in mixed continuous culture. Appl. Environ. Microbiol. 2001; 67:2145–2155.
    Peter H, Beier S, Bertilsson S, Lindstrom ES, Langenheder S, and Tranvik LJ. Function-specific response to depletion of microbial diversity. ISME J. 2011; 5:351–361.
    Pike RE, Haltli R, and Kerr RG. Description of Endozoicomonas euniceicola sp. nov. and Endozoicomonas gorgoniicola sp. nov., bacteria isolated from the octocoral Eunicea fusca and Plexaura sp., and an emended description of the genus Endozoicomonas. Int. J. Syst. Evol. Microbiol. 2014; 63:4294–302.
    Pimm SL. The complexity and stability of ecosystems. Nature. 1984; 307: 321–326.
    Pollock FJ, McMinds R, Smith S, Bourne DG, Willis BL, Medina M, et al. Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nat. Commun. 2018; 9:4921.
    Preston GM. Metropolitan microbes: type III secretion in multihost symbionts. Cell Host Microbe. 2007; 2:291–294.
    Props R and Denef VJ. Temperature and nutrient levels corresponds with lineage-specific microdiversification in the ubiquitous and abundant freshwater genus Limnohabitans. Appl. Environ. Microbiol. 2020; 86:e00140-20.
    Qin J, Li R, Raes J, Arunugam M, Burgdof SK, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010; 464:59–65.
    Qin QL, Xie BB, Yu Y, Shu YL, Rong JC, Zhang YJ, et al. Comparative genomics of the marine genus Glaciecola reveals high degree of genomic diversity and genomic characteristics for cold adaptation. Environ. Microbiol. 2014; 16:1642–1653.
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013; 41: D590–D596.
    R Core Team. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2016)
    Raina JB, Dinsdale EA, Willis BL, and Bourne DG. Do the organic sulfur compounds DMSP and DMS drive coral microbial associations? Trends Microbiol. 2010; 18:101–108.
    Raina JB, Tapiolas DM, Foret S, Lutz A, Abrego D, Ceh J, et al. DMSP biosynthesis by an animal and its role in coral thermal stress response. Nature. 2013; 502:677–680.
    Raina JB, Tapiolas DM, Willis D, and Bourne DG. Coral-associated bacteria and their role in the biogeochemical cycling of sulfur. Appl. Environ. Microbiol. 2009; 75:3492.
    Ransome E, Rowley SJ, Thomas S, Tait K, and Munn CB. Disturbance to conserved bacterial communities in the coral water gorgonian coral Eunicella verrucosa. FEMS Microbiol. Ecol. 2014; 90:404–416.
    Read BA, Kegel J, Klute MJ, Kuo A, Lefebvre SC, Maumus F, et al. Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature. 2013; 499:209–213.
    Redon R, Ishikawa S, Fitch KR, Leuk L, Perry GH, Andrews TD, et al. Global variation in copy number in the human genome. Nature. 2006; 444:444–454.
    Reich PB, Tilman D, Isbell F, Mueller K, Hobbie SE, Flynn DFB, et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science. 2012; 336:589–592.
    Reisch CR, Moran MA, and Whitman WB. Bacterial catabolism of Dimethylsulfoniopropionate (DMSP). Front. Microbiol. 2011; 2:172.
    Ren Ze, Wang F, Qu X, Elser JJ, Liu Y, and Chu L. Taxonomic and functional differences between microbial communities in Qinghai Lake and its input streams. Front. Microbiol. 2012; 8:1–14.
    Reshef L, Koren O, Loya Y, Zilber-Rosenberg I, and Rosenberg E. The coral probiotic hypothesis. Environ Microbiol. 2006; 8:2068–2073.
    Ritchie KB. Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar. Ecol. Prog. Ser. 2006; 322:1–14.
    Robbins SJ, Singleton CM, Chan CX, Messer LF, Geers AU, Ying H, et al. A genomic view of the reef-building coral Porites lutea and its microbial symbionts. Nat. Microbiol. 2019; 4:2090–2100.
    Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hardwin AKM, Kent AD, et al. Pyrosequencing enumerates and constrasts soil microbial diversity. ISME J. 2007; 1:283–290.
    Rohwer F, Seguritan V, Azam F, and Knowlton N. Diversity and distribution of coral-associated bacteria. Mar. Ecol. Prog. Ser. 2002; 243:1–10.
    Rolph G, Stein A, and Stunder B. Real-time environmental applications and display sYstem: READY. Environ. Model Softw. 2017; 95:210–228.
    Rosenberg E, Koren O, Reshef L, Efrony R, and Zilber-Rosenberg I. The role of microorganisms in coral health, disease and evolution. Nat. Rev. Microbiol. 2007; 5:355–62.
    Rosenfeld JS. Functional redundancy in ecology and conservation. OIKOS. 2002; 98:1.
    Rosselli R, Fiamma M, Deligios M, Pintus G, Pellizzaro G, Canu A, et al. Microbial immigration across the Mediterranean via airborne dust. Sci. Rep. 2015; 5:16305.
    Rouli L, Merhej V, Fournier P-E, and Raoult D. The bacterial pangenome as a new tool for analyzing pathogenic bacteria. New Microbes New Infect. 2015; 7:72–85.
    Ruiz-Gonzalez C, Nino-Garcia JP, Lapierre JF, and del Giorgio PA. The quality of organic matter shapes the functional biogeography of bacterioplankton across boreal freshwater ecosystems. Glob. Ecol. Biogeogr. 2015; 24:1487–1498.
    Sangwan N, Lata P, Dwivedi V, Singh A, Niharika N, Kaur J, et al. Comparative Metagenomic Analysis of Soil Microbial Communities across Three Hexachlorocyclohexane Contamination Levels. PLoS One. 2012; 7: e46219.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009; 75:7537–7541.
    Schmidt TM, DeLong ED, and Pace NR. Analysis of a marine picophytoplankton community by 16S rRNA gene cloning and sequencing. J. Bacteriol. 1991; 173:4371–4378.
    Schulz F, Eloe-Fadrosh EA, Bowers RM, Jarett J, Nielsen T, Ivanova NN, et al. Towards a balanced view of the bacterial tree of life. Microbiome. 2017; 5:140.
    Seemann T. 2014. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069.
    Shade A, Kent AD, Jones SE, Newton RJ, Triplett EW, and McMohan KD. Interannual dynamics and phenology of bacterial communities in a eutrophic lake. Limnol. Oceanogr. 2007; 52:487–494.
    Shade A, Chiu CY and McMahon KD. Differential bacterial dynamics promote emergent community robustness to lake mixing: an epilimnion to hypolimnion transplant experiment. Environ. Microbiol. 2010; 12: 455–466.
    Shade A, Read JS, Welkie DG, Kraztz TK, Wu CH, and McMohan KD. Resistance, resilience and recovery: Aquatic bacterial dynamics after water column disturbance. Environ. Microbiol. 2011; 13: 2752–2767.
    Shade A, Read JS, Youngblut ND, Fierer N, Knight R, Kratz TK, et al. Lake microbial communities are resilient after a whole-ecosystem disturbance. ISME J. 2012; 6:2153–2167.
    Shen W, Le S, Li Y, and Hu F. SeqKit: A cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS One. 2016; 11:1–10.
    Sheu SY, Lin KR, Hsu MY, Sheu DS, Tang SL, and Chen WM. Endozoicomonas acroporae sp. nov., isolated from Acropora coral. Int J Syst Evol Microbiol. 2017; 67:3791–3797.
    Shiu JH, Keshavmurthy S, Chiang PW, Chen HJ, Lou SP, Tseng CH, et al. Dynamics of coral-associated bacterial communities acclimated to temperature stress based on recent thermal history. Sci Rep. 2017; 7:14933.
    Simek K, Hornák K, Jezbera J, Nedoma J, Vrba J, Straskrabova V, et al. Maximum growth rates and possible life strategies of different bacterioplankton groups in relation to phosphorus availability in a freshwater reservoir. Environ. Microbiol. 2006; 8:1613–1624.
    Smith DJ. Microbes in the upper atmosphere and unique opportunities for astrobiology research. Astrobiology. 2013; 13:981–990.
    Speck MD and Donachie SP. Widespread Oceanospirillaceae bacteria in Porites spp. J Mar Biol. 2012; 1–7.
    Steen AD, Crits-Christoph A, Carini P, DeAngelis KM, Fierer N, Lloyd KG, et al. High proportions of bacteria and archaea across most biomes remain uncultured. ISME J. 2019; 13:3126–3130.
    Stein AF, Draxler RR, Rolph GD, Stunder BJB, Cohen MD, Ngan F, et al. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 2015; 96:2059–2077.
    Stewart RD, Auffret MD, Warr A, Walker AW, Roehe R, and Watson M. Compendium of 4,941 rumen Metagenome-Assembled Genomes for rumen microbiome biology and enzyme discovery. Nat. Biotechnol. 2019; 37:953–961.
    Strickland MS, Lauber C, Fierer N, and, Bradford MA. Testing the functional significance of microbial community composition. Ecology. 2009; 90:441–451.
    Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015; 348:1261359–1261359.
    Sunda W, Kieber DJ, Kiene RP, and Huntsman S. An antioxidant function for DMSP and DMS in marine algae. Nature. 2002; 418:317–320.
    Swingley WD, Sadekar S, Mastrian SD, Matthies HJ, Hao J, Ramos H et al. The complete genome sequence of Roseobacter denitrificans reveals a mixotrophic rather than photosynthetic metabolism. J. Bacteriol. 2007; 189:683–690.
    Tandon K, Chiang PW, Chen WM, and Tang SL. Draft genome sequence of Endozoicomonas acroporae strain Acr-14T, isolated from Acropora Coral. Genome Announc. 2018a; 6:e0156–17.
    Tandon K, Yang SH, Wan MT, Yang CC, Baatar B, Chiu CY, et al. Bacterial community in water and air of two sub-alpine lakes in taiwan. Microbes Environ. 2018b; 33:120–126.
    Tandon K, Wan MT, Yang CC, Yang SH, Baatar B, Chiu CY, et al. Reciprocal transplant experiment reveals partial functional redundancy in the aquatic microbiome. 2020a bioRxiv. doi:10.1101/2020.02.01.930198.
    Tandon K, Lu CY, Chiang PW, Wada N, Yang SH, Chan YF, et al. Comparative genomics: Dominant coral-bacterium Endozoicomonas acroporae metabolizes dimethylsulfoniopropionate (DMSP). ISME J. 2020b; 14:1290-1303.
    Tarao M, Jezbera J, and Hahn MW. Involvement of cell surface structures in size-independent grazing resistance of freshwater Actinobacteria. Appl. Environ. Microbiol. 2009; 75:4720–4726.
    Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc. Natl. Acad. Sci. USA. 2005; 102:13950–13955.
    Todd JD, Curson ARJ, Nikolaidou-Katsaridou N, Brealey CA, Watmough NJ, Chan Y, et al. Molecular dissection of bacterial acrylate catabolism- unexpected links with dimethylsulfoniopropionate catabolism and dimethylsulfide production. Environ. Microbiol. 2010; 12:327–343.
    Todd JD, Rogers R, Li YG, Wexler M, Bond PL, and Sun L. Structural and regulatory genes required to make the gas dimethylsulfide in bacteria. Science. 2007; 315:666–669.
    Traving SJ, Bentzon-Tilia M, Knudsen-Leerbeck H, Mantikci M, Hansen JLS, Stedmon CA, et al. Coupling bacterioplankton populations and environment to community function in coastal temperate waters. Front. Microbiol. 2016; 7:1–13.
    Tranvik LJ and Hofle MG. bacterial Growth in Mixed Cultures on Dissoloved Organic Carbon from Humic and Clear Waters. Appl. Environ. Micrbiol. 1987; 53:482–488.
    Tringe SG, Meering von C, Kobayashi A, Salamov AA, Chen K, Chang HW, et al. Comparative metagenomics of microbial communities. Science. 2005; 308: 554–557.
    Tringe SG and Rubin EM. Metagenomics: DNA sequencing of environmental samples. Nat. Rev. Genet. 2005; 6:805–814.
    Tsai JW, Kratz TK, Hanson PC, Wu JT, Chang WYB, Arzberger PW, et al. Seasonal dynamics, typhoons and the regulation of lake metabolism in a subtropical humic lake. Freshw. Biol. 2008; 53:1929–1941.
    Tsai JW, Kratz TK, Rusak JA, Shih WY, Liu WC, Tang SL, et al. Absence of winter and spring monsoon changes water level and rapidly shifts metabolism in a subtropical lake. Inland Waters. 2016; 6:436–448.
    Tsementzi D, Wu J, Deutsch S, Nath S, Rodriguez-R LM, Burns AS, et al. SAR11 bacteia linked to ocean anoxia and nitrogen loss. Nature. 2016; 536:179–183.
    Tseng CH, Chiang PW, Shiah FK, Chen YL, Liou JR, His TC, et al. Microbial and viral metagenomes of a subtropical freshwater reservoir subject to climatic disturbances. ISME J. 2013; 7:2374–2386.
    Tully BJ, Graham ED, and Heidelberg JF. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci. Data. 2018; 5:170203.
    Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009; 457:222–227.
    Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature. 2004; 428:37–43.
    Van de Water JA, Melkonan A, Voolstra CR, Junca H, Beraud E, Allemand D, et al. Comparative assessment of Mediterranean gorgonian-associated microbial communities reveals conserved core and locally vibrant bacteria. Microb. Ecol. 2017; 73:466–78.
    Van der Gucht K., Vandekerckhove T, Vloemans N, and Cousin S. Characterization of bacterial communities in four freshwater lakes differing in nutrient load and food web structure. FEMS Microbiol. Ecol. 2005; 53:205–220.
    Vatanen T, Plichta DR, Somani J, Munch PC, Arthur TD, Hall AB, et al. Genomic variation and strain-specific functional adaptation in the human gut microbiome during early life. Nat. Microbiol. 2019; 4:470–479.
    Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The sequence of the Human genome. Science. 2001; 291:1304–1351.
    Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science. 2004; 304:66–74.
    Veron JEN. Corals of the World. In: Stafford-Smith M, editor. Townsville, Australia: Australian Institute of Marine Sciences. Vol. 1–3; 2000.
    Vezzulli L, Pezzati E, Huete-Stauffer C, Pruzzo C, and Cerrano C. 16S rDNA pyrosequencing of the Mediterranean Gorgonian Paramuricea clavata reveals a link among alterations in bacterial holobiont members, anthropogenic influence and disease outbreaks. PLoS One. 2013; 8:6745.
    Wang LC, Behling H, Lee TQ, Li HC, Huh CA, Shiau LJ, et al. Increased precipitation during the little ice age in northern Taiwan inferred from diatoms and geochemistry in a sediment core from a subalpine lake. J. Paleolimnol. 2013; 49:619–631.
    Wang LC, Behling H, Kao SJ, Li HC, Selvaraj K, Hsieh ML, et al., Late Holocene environment of subalpine northeastern Taiwan from pollen and diatom analysis of lake sediments. J. Asian Earth Sci. 2015; 114:447–456.
    Ward L, Taylor MW, Power JF, Scott BJ, McDonald IR, and Stott MB. Microbial community dynamics in Inferno Crater Lake, a thermally fluctuating geothermal spring. ISME J. 2017; 11:1158–1167.
    Warnecke F, Amann R, and Pernthaler J. Actinobacterial 16S rRNA genes from freshwater habitats cluster in four distinct lineages. Environ. Microbiol. 2004; 6:242–253.
    Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, et al. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature. 2007; 450:560–565.
    Watanabe K, Komatsu N, Ishii Y, and Negishi M. Effective isolation of bacterioplankton genus Polynucleobacter from freshwater environments grown on photochemically degraded dissolved organic matter. FEMS Microbiol. Ecol. 2009; 67:57–68.
    Welch RA, Burland V, Plunkett III G, Redford P, Roesch P, Rasko D, et al. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc. Natl. Acad. Sci. USA. 2002; 99:17020–17024.
    Wessel P, Smith WH, Scharroo R, Luis J, and Wobbe F. Generic mapping tools: improved version released. Eos. Trans. Am. Geophys. Union. 2013; 94:409–10.
    Whitman WB, Coleman DC, and Wiebe WJ. Prokaryotes: The Unseen Majority. Proc. Natl. Acad. Sci. USA. 1998; 95:6578–6583.
    Wickham H. ggplo2: elegant graphics for data analysis. New York: Springer-Verlag; 2016.
    Wilson K. Preparation of genomic DNA from bacteria. Curr. Protoc. Mol. Biol. 2001; 56:241–245.
    Woese CR. Bacterial evolution. Microbiol. Rev. 1987; 51:221–271.
    Woese CR, Kandler O, and Wheelis ML. Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA. 1990; 87:4576–4579.
    Woyke T, Teelin H, Ivanova NN, Huntemann M, Richter M, Gloeckner FO, et al. Symbiosis insights through metagenomic analysis of a microbial consortium. Nature. 2006; 443:950–955.
    Wu Y, Tang YH, Tringe SG, Simmons BA, and Singer SW. MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm. Microbiome. 2014; 2:26.
    Wu Y, Zaiden N, Cao B. The core- and pan-genomic analyses of the genus Comamonas: From environmental adaptation to potential virulence. Front. Microb. 2018; 9:3096.
    Xiao L, Feng Q, Liang S, Sonne BS, Xia Z, Qiu X, et al. A catalog of the mouse gut metagenome. Nat. Biotechnol. 2015; 33:1103–1108.
    Xu C, Wei M, Chen J, Sui X, Zhu C, Li J, et al. Investigation of diverse bacteria in cloud water at Mt. Tai, China. Sci. Total Environ. 2017; 580:258–265.
    Yang CC and Iwasaki W. MetaMetaDB: A database and analytic system for investigating microbial habitability. PLoS One. 2014; 9: e87126.
    Yang SH, Lee STM, Huang CR, Tseng CH, Chiang PW, Chen CP, et al. Prevalence of potential nitrogen-fixing, green sulfur bacteria in the skeleton of reef-building coral Isopora palifera. Limnol. Oceanogr. 2016; 61:1078–86.
    Yang SH, Tandon K, Lu CY, Wada N, Shih CJ, Hsiao SSY, et al. Metagenomic, phylogenetic, and functional characterization of predominant endolithic green sulfur bacteria in the coral Isopora palifera. Microbiome. 2019; 7:3.
    Yang SH, Tseng CH, Huang CR, Chen CP, Tandon K, Lee STM, et al. Long-term survey is necessary to reveal various shifts of microbial compositions in corals. Front. Microbiol. 2017; 8:1094.
    Yoch DC. Dimethylsulfoniopropionate: its source, role in the marine food web, and biological degradation of dimethylsulfide. Appl. Environ. Microbiol. 2002; 68:5804–5815.
    Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, et al. The SILVA Database; All-species living tree project (LTP); taxonomic frameworks. Nucleic Acids Res. 2014; 42:D643–D648.
    Yin B, Crowley D, Sparovek G, De Melo WJ, and Borneman J. Bacterial functional redundancy along a soil reclamation gradient. Appl. Environ. Microbiol. 2000; 66:4361–4365.
    Zanevald JR, Burkepile DE, Shantz AA, Pritchard CE, McMinds R, Payet JP, et al. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat. Commun. 2016; 7:11833.
    Zhang W, Cao S, Ding W, Wang M, Fan S, Yang B, et al. Structure and Function of the Arctic and Antarctic marine microbiota as revealed by metagenomics. Microbiome. 2020; 8:247.
    Ziegler M, Roik A, Porter A, Zubier K, Mudarris SM, Ormond R, et al. Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea. Mar. Pollut. Bull. 2016; 105:629–640.
    Ziegler M, Seneca FO, Yum LK, Palumbi SR, and Voolstra CR. Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat. Commun. 2017; 8:14213.
    Ziegler M, Grupstra CGB, Barreto MM, Eaton M, BaOmar J, Zubier K, et al. Coral bacterial community structure responds to environmental change in a host-specific manner. Nat. Commun. 2019; 10:3092.
    Zielinski FU, Pernthaler A, Duperron S, Raggi L, Giere O, Borowski C, et al. Widespread occurrence of an intranuclear bacterial parasite in vent and seep bathymodiolin mussels. Environ. Microbiol. 2009; 11:1150–1167.
    Zhou Y, Liang Y, Lynch KH, Dennis JJ, and Wishart DS. PHAST: a fast phage search tool. Nucleic Acids Res. 2011; 39:W347–W352.
    Zou Y, Xue W, Luo G, Deng Z, Qin P, Guo R, et al. 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses. Nat. Biotechnol. 2019; 37:179–185.

    QR CODE