簡易檢索 / 詳目顯示

研究生: 周敏傑
Min-Chieh Chou
論文名稱: 低應力、高硬度、厚微結構之X光微影及電鍍技術
Deep X-ray lithography and low-stress high-hardness electroplating technologies for the micro structure
指導教授: 吳信田
Shinn-Tyan Wu
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 80
中文關鍵詞: 微影電鑄電鍍微結構微機電系統光刻模造
外文關鍵詞: lithography, electroforming, electroplating, micro structure, MEMS, LIGA
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係以同步幅射X光微影及Ni基合金電鍍技術進行低應力、高硬度、高深寬比微結構之製程條件研究。在微影技術方面,探討了曝光劑量、顯影溫度對於顯影行為的影響;在電鍍技術方面,探討鍍液成分、電流密度對Ni-Co及Ni-P-SiC合金之鍍層成分,顯微組織,以及殘留應力、硬度等機械性質之影響。X光微影技術研究顯示,在充分攪拌的條件下,低深寬比厚PMMA光阻在顯影液中的顯影速率和曝光劑量的對數值、以及顯影深度皆成線性正比關係;在未攪拌的條件下,槽寬100 µm的高深寬比結構之顯影速率初期與曝光劑量成線性關係,但之後迅速受擴散速率影響而呈現定值。Ni-Co合金電鍍的研究顯示,Ni-Co之異常共沈積行為在鍍層鈷含量高達58.3 wt.%以上時,鈷之異常共析趨勢更嚴重,可能是受到Ni-Co陰極的結晶格子排列由fcc轉變為hcp的影響。此外,當Ni-Co鍍層的鈷含量在27 wt.%時,鍍層的硬度值最大,可達Hv 580;添加適當應力消除劑之後,鍍層殘留應力可藉由鍍層鈷含量的調整而降至0.012 kg/mm2,此時,相對應的鍍層顯微組織之晶粒尺寸亦最小,約為50 nm。Ni-P-SiC複合電鍍研究顯示,Ni-P合金鍍層中加入陶瓷微粒有助於降低鍍層本身的內應力,使鍍層表面的龜裂現象明顯改善,而鍍層中SiC含量則隨著鍍液中SiC含量的增加而增加。同時,SiC的添加會降低Ni-P-SiC鍍層之磷含量,因而提高鍍層之硬度,當鍍層磷含量在3.66 wt.%左右時,硬度值達最大Hv 770。當磷含量高於3.66 wt.%時,硬度則隨著磷含量增加而下降,而且伴隨著(111)Ni優選方向的產生;反之,在磷含量低於3.66 wt.%時,鍍層之硬度會隨磷含量增加而增加,此時顯微結構亦有(200)Ni and (220)Ni繞射峰的產生。磷含量3.5 wt.%之Ni-P-SiC複合鍍層,其顯微結構為一極細的fcc、柱狀多結晶排列,柱狀成長方向與基材表面垂直,柱狀直徑約20 nm,而且具有十分強烈的優選方向,其(111)面多平行於基材表面。


    This investigation studied the deep X-ray lithography and the Ni-based alloy electroplating technologies for the low-stress, high-hardness and high-aspect-ratio micro structures. How the exposure dosage and developing temperature affected the development and how the composition of the plating bath and current density affected the composition, metallurgical microstructure, residual stress and hardness of Ni-Co and Ni-P-SiC deposits were discussed. The results of low-aspect-ratio X-ray lithography reveal that, with ultrasonic agitation, the developing rate of PMMA in developer is linearly proportional to the logarithm of the exposure dosage, and also to the developed depth. The codeposition of Ni-Co alloy becomes more anomalous while the cobalt content in the deposit is over 58.3 wt.%. When the cobalt content is about 27 wt.%, the hardness is maximum of Hv 580. By adding the stress reducer, the residual stress can be adjusted to 0.012 kg/mm2 with the smallest grain size of 50 nm in the deposit. The results of the Ni-P-SiC electroplating reveal that increasing current density and SiC concentration in the bath can increase the SiC content in the deposit. Adding SiC into Ni-P alloy matrix significantly reduces the residual stress in the deposit and consequently eliminates the surface crack of the deposit. SiC also greatly lowers the phosphorus content in the deposit, and then increases the hardness to a maximum of Hv 770 as the mass fraction of phosphorus in the deposit is approximately 3.66 %. At higher phosphorus contents, the deposits are associated only with (111)Ni preferred oriented grains. When the phosphorus content is close to or below 3.66 %, the structure becomes more random and is accompanied by the presence of (200)Ni and (220)Ni planes. The microstructure of Ni-P-SiC composite deposit with 3.5 wt.% phosphorus is composed of fine columnar fcc polycrystalline, which are perpendicular to the surface of substrate. The diameter of the columar grain is about 20 nm.

    中文摘要 英文摘要 誌 謝 目 錄 第一章 前言.....1 第二章 文獻回顧.....4 2-1 X光曝光與顯影 2-1-1 X光曝光劑量分布與曝光策略 2-1-2 顯影速率 2-2 高硬度Ni-Co合金電鍍 2-2-1 Ni-Co合金強化機制 2-2-2 合金電鍍原理 2-2-3 Ni-Co合金異常共沈積(anomalous codeposition) 2-2-4 鍍液種類與添加劑的影響 2-3 Ni-P-SiC複合電鍍 2-3-1 Ni-P合金 2-3-2 Ni-P合金電鍍之反應機制 2-3-3 Ni-P-陶瓷微粒複合電鍍 第三章 實驗方法與步驟.....26 3-1 X光曝光顯影實驗 3-2 電鍍液配方及操作條件鍍膜設備 3-3 量測實驗設備與步驟 3-3-1 內應力量測 3-3-2 鍍層成分分與微硬度量測 3-3-3 鍍層表面觀察與顯微結構分析 第四章 結果與討論.....32 4-1 X光曝光與顯影 4-1-1 厚光阻低深寬比結構之顯影行為 4-1-2 厚光阻高深寬比結構之顯影行為 4-2 Ni-Co合金電鍍 4-2-1 合金鍍層之內應力及硬度 4-2-2 電鍍條件對鍍層鈷含量之影響 4-2-3 電鍍條件對鍍層表面顯微組織之影響 4-3 Ni-P-SiC複合電鍍 4-3-1 電流密度與SiC微粒對複合鍍層內應力的影響 4-3-2電流密度與SiC微粒對複合鍍層成分與微硬度的影響 4-3-3 計算鍍層微硬度值與鍍層SiC含量及磷含量的關係 4-3-4 Ni-P-SiC複合鍍層顯微結構 4-4 微結構試作 第五章 結論.....66 第六章 未來研究方向.....68 參考文獻.....69 附錄A Dose Distribution of Synchrotron X-Ray Penetrating Materials.....73 附錄B 計算曝光劑量的步驟.....80

    [1] W. Menz: Microsystem Technology for Engineers Intensive Course, Nuclear Research Center Karlsruhe Institute for Microstructure Technology, Germany (1994).
    [2] O. Schmalz, M. Hess, R. Kosfeld, Angew. Makromol. Chem. 239 (1996) 79-91.
    [3] O. Schmalz, M. Hess, R. Kosfeld, Angew. Makromol. Chem. 239 (1996) 93-106.
    [4] Y. Cheng, N.-Y. Kuo, C.-H. Su, Review of Scientific Instrument, 68 (5) (1997) 2163-2166.
    [5] J. Zanghellini, A. Achenbach, A. Ei-kholi, J. Mohr and F.J. Pantenburg: Journal of Micro-system Technologies 4 (1998) 94-97.
    [6] J. Zanghellini, A. Ei-kholi, J. Mohr: Journal of Microelectronic Engineering 35 (1997) 409-412.
    [7] A. R. Neureuther, C. A. Mack, in: Handbook of Micro-lithography, Micro-machining, and Micro-fabrication (Volume 1: Micro-lithography), eds. P. Rai-Choudhury (SPIE Press, 1997) p. 628.
    [8] J .S. Greeneich, J. Electrochem. Soc., 122 (1975) 970-976.
    [9] K. A. Valiev, The Physics of Submicron Lithography, (1992)p. 380.
    [10] Z Liu, F. Bouamrane, M. Roulliay, R. K. Kupka, A. Lab`eque, S. Megterty, J. Micromech. Microeng. 8 (1998) 293–300.
    [11] Shinn-Horng Yeh, C-Y Liue, Jih-Wen Wang, Min-Chieh Chou, Shu-Ling Hou, in: Micromachining and Microfabrication Process Technology Ⅲ, eds. S. C. Chang, S. W. Pang, Proceedings of SPIE, Vol. 3223, (1997) p.82-89.
    [12] 周敏傑,呂春福,王紀雯,何淑鈴,葉信宏,”微結構之合金電鑄技術研究” 機械工業185期,(1998),p.150-157。
    [13] Xiao-Hong Liu, Shi-Bai Yang, and Xian-Hai Yu, Metal Finishing, Nov., (1994) 76-78.
    [14] R. L. Zeller, and U. Landau, Plating and Surface Finishing, Dec., (1991) 53-60.
    [15] C. G. Xiao, Z. G. Deng, Lijun Z., Plating and Surface Finishing, Oct., (1988) 54-57.
    [16] O. Berrk, S. Eskin, and J. Zahavi, Plating and Surface Finishing, Feb., (1995) 72-76.
    [17] M. Takaya, M. Matsunaga and T. Otaka, Plating and Surface Finishing, Sep., (1987) 70-72.
    [18] R. Narayan and S. Singh, Metal Finishing, March, (1983) 45-46.
    [19] T. B. Massalski in: Physical Metallurgy, part 1, 3rd,edited by R.W. Cahn and P. Haasen (Elsevier Science Publishers, 1983) p.154-163.
    [20] A. Fernandez Guillermet, Z. Metallk.. 78 (1987) 639.
    [21] D. Golodnitsky, Yu. Rosenberg, A. Ulus, Electrochimica Acta 47 (2002) 2707-2714.
    [22] J. Meissner, Z. Metallk.. 50 (1959) 207.
    [23] P. Haasen in: Physical Metallurgy, part 2, 3rd, edited by R.W. Cahn and P. Haasen (Elsevier Science Publishers, 1983) p.1349-1357.
    [24] C.L. Faust, in: Modern Electroplating, edited by Frederick A. Lowenheim (John Wiley & Sons, New York, 1974) p.488.
    [25] S. Goldbach, R de Kermadec and F. Lapicque, J. Appl. Electrochem. 30 (2000) 277-284.
    [26] A. Brenner, in: Electrodeposition of Alloys, Vol. 1 and 2, (Academic Press Inc, New York, 1963)
    [27] C. Fan and D. L. Piron, Electrochim. Acta 41 (1996) 1713-1719.
    [28] H. Dahms, J. Electroanal. Chem., 8 (1964) 5.
    [29] H. Dahms, I. M. Croll, J. Electrochem. Soc. 112 (1965) 771-775.
    [30] S. Hessami, C.W. Tobias, J. Electrochem. Soc. 136 (1989) 3611-3616.
    [31] W. C. Grande and J. B. Talbot, J. Electrochem. Soc. 140 (1993) 669-675.
    [32] M. Matlosz, J. Electrochem. Soc. 140 (1993) 2272-2279.
    [33] Allen Bai and C. C. Hu, Electrochimica Acta 47 (2002) 3447-3456.
    [34] L. Gianelos, W. H. McMullen, in: Metal Handbook, 9th ed. Vol. 5, p.199-218.
    [35] A.N. Correia and S.A.S. Machado, Electrochim. Acta 45 (2000) 1733-1740.
    [36] A.N. Correia and S.A.S. Machado, J. Appl. Electrochem. 33 (2003) 367-372.
    [37] Y. C. Liu, J. W. Wang, Y. M. Peng, H. J. Chen, J. H. Shen, and C. A. Huang, MRL Bull. Res. Dev., 4 (1990) 31.
    [38] M. Ghouse, Metal Finishing, April, (1984) 33.
    [39] E. Toth-Kadar, I. Bakonyi, A Solyom, J. Hering, G. Konczos, F Pavlyak, Surface and Coatings Tech., 31(1987) 31-43.
    [40] Ray Taheri, Thesis for the Degree of Doctor of Philosophy, Department of Mechanical Engineering, University of Saskatchewan, Canada, 2003.
    [41] M. Hansen, Der Aufbau der Zweistofflegierungen, Edwards Brothers, Ann Arbor, MI 1943
    [42] J. Koeneman and A. G. Metcalfe, Trans. Metallurgy. Soc. of AIME, (1958) 571.
    [43] R. N. Duncan, Plating and Surface Finishing, Nov., (1996) 65-69.
    [44] H. Nishimoto, Y. Sugizaki and K. Veda, JP 04026792 A2 (1992) 29.
    [45] R. Weil, J.H. Lee, I. Kim, and K. Parker, Plating and Surface Finishing, Feb., (1989).62-66.
    [46] M. H. Seo, H. S. Kim, W. S. Hwang, D. J. Kim, S. S. Hwang, B. S. Chun, Surface and Coatings Tech., 176 (2004) 135-140.
    [47] M. Ratzker, D. S. Lashmore and K. W. Pratt, Plating and Surface Finishing, Sep., (1986) 74-82.
    [48] M. Gulielmi, J. Electrochem. Soc. 119 (1972) 1009-1012.
    [49] B. J. Hwang and C. S. Hwang, J. Electrochem. Soc. 140 (1993) 979-984.
    [50] D. H. Cheng, W. Y. Xu, L. Q. Hua, Z. Y. Zhang and X. J. Wan, Plating and Surface Finishing, Feb., (1998) 61-64.
    [51] 張會臣、張夢熊,機械工程材料,29(2), (1996) 20-22.
    [52] 王德英、徐有容、張浩民、王彪,功能材料,29(5), (1998) 502-505.
    [53] G. Wu, N. Li, D. Zhou, K. Mitsuo, Surface and Coatings Technology 176 (2004) 157-164.
    [54] 郭鶴桐、張三元,”複合鍍層”(天津大學出版社,1991) p.121-130.
    [55] I. Shao, P. M. Vereecken, R. R. Cammarata, P. C. Searson, J. Electrochem. Soc., 149(11), (2002) 610-614.
    [56] S. C. Wang and W. C. J. Wei, Materials Chemistry and Physics, 78, (2003) 574-580.
    [57] G. Maurin and A. Lavanant, J. Appl. Electrochem., 25, (1995) 1113-1121.
    [58] S.Y. Park, R.H. Kim, J.S. Kim, C.K. Kim, J. Korean Surf. Eng., 25(2), (1992) 73.
    [59] A.E. Breaux and E.J. Podlaha, in: 195th society Meeting of the Electrochemical Society, v.99-1, Abstract 2.(1999) p.13.
    [60] S.L. Kuo, X.L. Chen, Y.C. Chen, W.H. Hwu, and M.D. Ger, J. Chin. Inst. Chem. Engrs., 38(4), (2003) 393-398.
    [61] I. Paseka, Electrochim. Acta 47 (2001) 921-931.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE