研究生: |
蔡函諺 Tsai, Han-Yan |
---|---|
論文名稱: |
新型鈣鈦礦太陽能電池之電洞傳輸材料與面向雙三配位銥金屬錯合物合成、光物理性質探討 Synthesis of Novel Hole Transport Materials for Perovskite Solar Cells and Facially Coordinated Bis-Tridentate Iridium(III) Metal Emitters |
指導教授: |
季昀
Chi, Yun |
口試委員: |
衛子健
Wei, Tzu-Chien 徐秀福 Hsu, Hsiu-Fu |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 121 |
中文關鍵詞: | 鈣鈦礦太陽能電池電洞傳輸材料 、銥金屬錯合物 、有機發光二極體 |
外文關鍵詞: | Perovskite Solar Cells hole transmission materials, Iridium(iii) complexes, OLED |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要分為兩個部分,第一部分是應用在鈣鈦礦太陽能電池的新型電洞傳輸材料,第二部分為探討銥金屬磷光材料的研究與合成。
在第一部分,本研究延續過去實驗室使用之 phenyl-pyrazole 結構,結合陳建添教授團隊開發之3,7-二溴-二苯並[a,d]環庚烯-5-酮,成功合成出化合物 THY-1~5 ,這系列的化合物有適用於鈣鈦礦太陽能電池電洞傳輸材料的 HOMO 能階。元件製作則是委託清大化工系衛子健老師實驗室進行,初步元件結果以 THY-3 和 THY-5 效率可達到 14% 與對照組的 spiro-OMeTAD 相同。
第二部分方面,不同於過去實驗室在雙三牙配位銥金屬錯合物大都為meridional 構形,本研究利用 triphenyl phosphite 這個過去已知會形成單邊 facial 構形的配位基,再搭配 2,2'-(9-fluorenylidene)dipyridine 作為潛在的三配位配位基,成功合成出 facial 構形的雙三配位銥金屬錯合物,並探討其光物理與電化學性質。
In the first part, we report the successfully synthesis of a series of spiro-phenylpyrazole/ dibenzosuberenone based hole transport materials THY-1~5 from reaction of 5-(2-bromophenyl)-1H-pyrazole and 3,7-dibromo-5H-dibenzo[a,d][7]annulen-5-one, the latter was developed by Prof. Chien-Tien Chen and coworkers. These compounds have HOMO energy level of -5.22 ~ -5.26 eV which allows them to function as suitable hole transporting material of perovskite solar cells. The device efficiency of perovskite solar cells fabricated with compound THY-3 and THY-5 as hole transporting material can reach 14%, which is the same as our control compound, spiro-OMeTAD.
In the second part, different from the common bis-tridentate iridium(III) complexes with meridional configuration, we utilize both triphenyl phosphite, a ligand which can form unilateral facial configuration, and 2,2'-(9-fluorenylidene)dipyridine as the double tridentate ligands and have successfully synthesized the facially coordinated bis-tridentate iridium (III) complexes. Its optical physics and electrochemistry will be discussed in the following part.
1. M. Cai, Y. Wu, H. Chen, X. Yang, Y. Qiang and L. Han, Adv. Sci., 2017, 4, 1600269.
2. J.-P Correa-Baena, A. Abate, M. Saliba, W. Tress, T. J. Jacobsson, M. Gr¨atzel and A. Hagfeldt, Energy Environ. Sci., 2017, 10, 710.
3. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.
4. W. S. Yang1, B.-W. Park1,E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. .Kim, J. H. Noh, S. I. Seok, Science, 2017, 356, 1376 - 1379.
5. Science News“Breakthrough of the Year: Newcomer Juices Up the Race to Harness Sunlight, Science 2013, 342, 1438.-1439
6. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel and N.-G. Park, Sci. Rep. 2012, 2, 591.
7. H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu and Y. Yang, Science 2014, 345, 542.
8. Y. Shirota and H. Kageyama, Chem. Rev., 2007, 107, 953.
9. J. A. Christians, R. C. M. Fung and P. V. Kamat, J. Am. Chem. Soc., 2014, 136, 758.
10. S. Ye,W. Sun, Y. Li, W. Yan, H. Peng, Z. Bian, Z. Liu and C. Huang, Nano Lett. 2015, 15, 3723.
11. M. Lv, J. Zhu, Y. Huang, Y. Li, Z. Shao, Y. Xu and S. Dai, ACS Appl. Mater. Interfaces., 2015, 7, 17482.
12. G. Sfyri, C. V. Kumar, Y.-L. Wang, Z.-X. Xu, C. A. Krontiras and P. Lianos, Appl. Surf. Sci., 2016, 360, 767.
13. W. Ke, D. Zhao, C. R. Grice, A. J. Cimaroli, J. Ge, H. Tao, H. Lei, G. Fang and Y. Yan, J. Mater. Chem. A, 2015, 3, 23888.
14. A. Suzuki, T. Kida, T. Takagi and T. Oku, Jpn. J. Appl. Phys., 2016, 55, 02BF01.
15. M. Sun, S. Wang, Y. Xiao, Z. Song and X. Li, J. Energy Chem., 2015, 24, 756.
16. G. Sfyri, C. V. Kumar, G. Sabapathi, G. Lingamallu, K. S. Andrikopoulos, E. Stathatos and P. Lianos, RSC Adv., 2015, 5, 69813.
17. A. C. Grimsdale, K. Leok Chan, R. E. Martin, P. G. Jokisz and A. B. Holmes, Chem. Rev., 2009, 109, 897.
18. Y.-J. Cheng, S.-H. Yang and C.-S. Hsu, Chem. Rev., 2009, 109, 5868.
19. W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo and S. I. Seok, Science, 2015, 348, 1234.
20. A. Krishna and A. C. Grimsdale, J. Mater. Chem. A, 2017, 5, 16446.
21. J. Krüger, R. Plass, L. Cevey, M. Piccirelli and M. Grätzel, Appl. Phys. Lett., 2001, 79, 2085.
22. T Leijtens, J. Lim, J. Teuscher, T. Park and H. J. Snaith, Adv. Mater., 2013, 25 3227.
23. Y. S. Kwon, J. Lim, H.-J. Yun, Y.-H. Kim and T. Park, Energy Environ. Sci., 2014, 7, 1454.
24. H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song, H. S. Duan, Z. R. Hong, J. B. You, Y. S. Liu and Y. Yang, Science, 2014, 345, 542.
25. M. Liu, M. B. Johnston and H. J. Snaith, Nature, 2013, 501,395.
26. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin and M. Grätzel, Nature, 2013, 499, 316.
27. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, Science, 2012, 338, 643.
28. N. J. Jeon, H. G. Lee, Y. C Kim., J. Seo, J. H Noh., J. Lee and S. I. Seok, J. Am. Chem. Soc., 2014, 136, 7837.
29. J. A. Christians, R. C. M. Fung and P. V. Kamat, J. Am.Chem. Soc., 2013, 136, 758 .
30. M.-H. Li, C.-W. Hsu, P.-S. Shen, H.-M. Cheng, Y. Chi, P. Chen and T.-F. Guoacd, Chem. Commun., 2015, 51, 15518.
31. Y. Wang, T.-S. Su, H.-Y. Tsai, T.-C. Wei and Y. Chi, scientific reports, 2017, 7, 7859.
32. Y. Wang, Z. Zhu, C.-C. Chueh, Alex K.-Y. Jen and Y. Chi, Adv. Energy Mater., 2017, 7, 1700823.
33. M. Pope, H. P. Kallmann, and P. Magnante, J. Chem. Phys., 1963, 38, 2042.
34. C. W. Tang, and S. A. VanSlyke, Appl. Phys. Lett., 1987, 51, 913.
35. Y. Chi, B. Tong; P.-T. Chou, Coord. Chem. Rev., 2014, 281, 1.
36. J. Kavitha, S.-Y. Chang, Y. Chi, J.-K. Yu, Y.-H. Hu, P.-T. Chou, S.-M. Peng, G.-H. Lee, Y.-T. Tao, C.-H. Chien and A. J. Carty, Adv. Funct. Mater., 2005, 15, 223.
37. H. Sasabe and J. Kido, Eur. J. Org. Chem., 2013, 2013 , 7653.
38. X. Yang, X. Xu and G. Zhou, J. Mater. Chem. C, 2015, 3, 913.
39. H. Yersin, A. F. Rausch, R. Czerwieniec, T. Hofbeck and T. Fischer, Coord. Chem. Rev. 2011, 255, 2622.
40. C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson and S. R. Forrest, Appl. Phys. Lett., 2001, 79, 2082.
41. S.-J. Yeh, M.-F. Wu, C.-T. Chen, Y.-H. Song, Y. Chi, M.-H. Ho, S.-F. Hsu and C. H. Chen, Adv. Mater., 2005, 17, 285.
42. C.-H. Yang, Y.-M. Cheng, Y. Chi, C.-J. Hsu, F.-C. Fang, K.-T. Wong, P.-T. Chou, C.-H. Chang, M.-H. Tsai and C.-C.Wu, Angew. Chem. Int. Ed., 2007, 46, 2418.
43. C.-F. Chang, Y.-M. Cheng, Y. Chi, Y.-C. Chiu, C.-C. Lin, G.-H. Lee, P.-T. Chou, C.-C. Chen, C.-H. Chang and C.-C. Wu, Angew. Chem. Int. Ed. 2008, 47, 4542.
44. T. Sajoto, P. I. Djurovich, A. Tamayo, M. Yousufuddin, R. Bau, M. E. Thompson, R. J. Holmes and S. R. Forrest, Inorg. Chem. 2005, 44, 7992.
45. Y.-C. Chiu, J.-Y. Hung, Y. Chi, C.-C. Chen, C.-H. Chang, C.-C. Wu, Y.-M. Cheng, Y.-C. Yu, G.-H. Lee and P.-T. Chou, Adv. Mater. , 2009, 21, 2221.
46. A. J. Wilkinson, A. E. Goeta, C. E. Foster, J. A. Gareth Williams, Inorg. Chem., 2004, 43, 6513.
47. B. Tong, H.-Y. Ku I.-J. Chen, Y. Chi, H.-C. Kao, C.-C. Yeh, C.-H. Chang, S.-H. Liu, G.-H. Lee and P.-T. Chou, J. Mater. Chem. C, 2015, 3, 3460.
48. C.-Y. Kuei, W.-L. Tsai, B. Tong, M. Jiao, W.-K. Lee, Y. Chi, C.-C Wu, S.-H. Liu, G.-H. Lee and P.-T. Chou, Adv. Mater. 2016, 28, 2795.
49. Y.-S. Li, J.-L. Liao, K.-T. Lin, W.-Y Hung, S.-H. Liu, G.-H. Lee, P.-T. Chou and Y. Chi, Inorg. Chem. 2017, 56, 10054.
50. K.-Y. Liao, C.-W. Hsu, Y. Chi, M.-K. Hsu, S.-W. Wu, C.-H. Chang, S.-H. Liu, G.-H. Lee, P.-T. Chou, Y. Hu, and N. Robertson, Inorg. Chem. 2015, 54, 4029.
51. C. D. Sunesh, R. K. Chitumalla, M. S. Subeesh, K. Shanmugasundaram, J. Jang and Y. Choe, Journal of Electroanalytical Chemistry, 2016, 780, 249.