研究生: |
洪欽華 Hung, Chin-Hua |
---|---|
論文名稱: |
利用小角度X光散射研究硫醇保護金奈米粒子與磷脂分子及磷脂微脂粒的交互作用 SAXS Studies on the Interaction of Thiolated-Gold Nanoparticles with Liposomes |
指導教授: |
林滄浪
Lin, Tsang-Lang |
口試委員: |
鄭有舜
蕭百沂 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 60 |
中文關鍵詞: | 金奈米顆粒 、磷脂質 、微脂粒 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討不同碳鏈長的硫醇分子所合成之疏水金奈米顆粒以磷脂分子DPPC及DiC7PC包覆並分散於水溶液中,並以X光小角度散射(SAXS)來了解金奈米顆粒在磷脂分子構成之藥物載體上的聚集及分散程度。首先以八碳和十六碳硫醇分子做為保護劑合成出金奈米粒子,並在有機相中添加上述之磷脂分子,藉由相對應碳鏈長之磷脂分子的添加並相轉換之後,由SAXS發現金奈米顆粒的聚集程度並不隨著磷脂分子的添加量而有所改變,而皆是以固定尺寸之團聚物為單位包覆於磷脂自組裝物中,這顯示即使以相對短碳鏈之硫醇保護劑合成的金奈米顆粒之間的碳氫鏈作用力仍是極強,不易由外在添加物所分散,這點也可在電子顯微鏡的結果發現到,但當短碳鏈金奈米顆粒以團聚物包覆於磷脂分子中,會產生具有規則的結構;相對於長碳鏈金奈米顆粒則無此現象發生。然而在上述提及的金奈米粒子和磷脂分子的複合物額外於水溶液中添加多餘的磷脂分子自組裝物,隨著時間的演進,也可回到在有機相內含有相同物質量所形成的型態。
Abstract
Small-Angle X-ray scattering (SAXS) was used to investigate the dispersion of thiolated gold nanoparticles (Au-16C and Au-8C NPs) with DPPC, DiC7PC, and their combination of molar ratio 1:1. It was found that adding small amounts of phospholipids to disperse the synthesized thiolated small Au NPs in water phase would induce the formation of small thiolated-Au NP clusters that presumably are wrapped by a monolayer of phospholipids on the surface of the cluster, resembling the swollen micellar structure. However, when larger amounts of phospholipids (DPPC) were added, the morphology is transformed from thiolated-Au clusters into vesicle forms. The structural transition could be induced by the presence of lipid bilayers (liposomes) that could engulf the lipid wrapped thiolated-Au NP clusters to form such lipid bilayer vesicles loaded with several thiolated-Au NP clusters in the lipid membrane. The in-situ time-resolved study on the structural transformation by mixing lipid wrapped thiolated-Au NPs with liposomes showed that such a process would take hours to complete. The further observation of Au-8C NP dispersed by DPPC shows there’re two phases occurred as Au-8C aggregation, amorphous and crystalline. The phase can only be influenced by the initial concentration of sample chloroform state instead of thermal treatment or adding 8C thiol. And we believe that the crystalline phase will be superlattice structure made by Au-8C packing.
參考文獻
[1] M. Haruta et al., Chemistry Letters, 1987, 2, 405-408
[2] T. Mitsudome et al., Chem. Commun., 2009, 5302-5304
[3] H. E. Katz et al., Nature, 2000, 404, 478-481
[4] W.-H Lai et al., J. Photochem. and Photobio. A: Chemistry, 2008, 195,307–313
[5] Webster, Thomas J., Safety of Nanoparticles, ISBN: 978-0-387-78607-0
[6] N. Lewinski et al., small, 2008, 4, No. 1, 26–49
[7] R. Shukla et al., Langmuir, 2005, 21, 10644-10654
[8] Mrinmoy De et al., Adv. Mater. 2008, 20, 4225–4241
[9] R. A. Sperling et al., Chem. Soc. Rev., 2008, 37, 1896–1908
[10] D. A. Giljohann et al., Angew. Chem. Int. Ed., 2010, 49, 3280–3294
[11] P. K. Jain et al., J. Phys. Chem. B, 2006, 110, 7238
[12] F. Mafuné et al., J. Phys. Chem. B, 2000, 104, 8333-8337
[13] F. Mafuné et al., J. Phys. Chem. B, 2001, 105, 5114-5120
[14] J. S. Bradley et al., VCH Publishers: New York, NY(USA), 1994, 459-537
[15]what-when-how.com/nanoscience-and-nanotechnology/nanoencapsulation-of-bioactive-substances-part-1-nanotechnology/
[16] X. M. Shi et al., J. Bio. Chem., 2009, 284, 23
[17] N. E. Gabriel et al., Biochemistry, 1986, 25, 2812-2821
[18] T. L. Lin et al., J. Phys. Chem. 1991, 95, 6020-6027
[19] T. L. Lin et al., J. Am. Chem. SOC. 1986, 108, 3499-3501
[20] http://www.answers.com/topic/micelle
[21] C. B. Murray et al., J. Am. Chem. Soc. 1993, 115, 8706-8715
[22] B. Dubertret et al., Science, 2002, 298, 1759-1762
[23] H. S. Wi et al., J. Phys.: Condens. Matter, 2008, 20, 494211
[24] Z. Chen et al., Biophys. J., 1997, 73, 267–76
[25] R. Benz et al., Biochim. Biophys. Acta, 1976, 455, 721–38
[26] S. Tristram-Nagle et al., Biochemistry, 1998, 23, 2696–703
[27] S. L. Keller et al., Biophys. J., 1993, 65, 23–7
[28] S.-H. Park et al., Colloids and Surfaces B: Biointerfaces, 2006, 48, 112–118
[29] S.-H. Park et al., Colloids and Surfaces B: Biointerfaces, 2005, 44, 117–122
[30] M. R. Rasch et al., Nano Lett. 2010, 10, 3733–3739
[31] M. Brust et al., J. Chem. Soc., Chem. Commun., 1994, 801-802
[32] M. M. Alvarez et al., J. Phys. Chem. B, 1997, 101, 3706-3712
[33] T. Shimizu et al., J. Phys. Chem. B, 2003, 107, 2719-2724