研究生: |
連冠豪 Lian, Guan-Hao |
---|---|
論文名稱: |
物聯網晶片內之匹夫塔效應之雲端監測系統 Cloud-Based PVTA Monitoring System for IoT Devices |
指導教授: |
黃錫瑜
Huang, Shi-Yu |
口試委員: |
呂學坤
Lu, Shyue-Kung 李進福 Li, Jin-Fu 周永發 Chou, Yung-Fa 蒯定明 Kwai, Ding-Ming |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 39 |
中文關鍵詞: | 雲端監測 、可靠度 、物聯網 、匹夫塔效應 、環型振盪器 、電壓降 |
外文關鍵詞: | Cloud-based Monitoring, Reliability, Internet of Things, PVTA variations, Ring Oscillator, Voltage drop |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
科技的快速成長帶來很多的好處,例如電路面積的縮小、頻率的提升、以及功耗的降低等等,然而,這些改變也使得電路的可靠度越來越有挑戰性。除此之外,在一些特別注重安全的應用上常常需要更高的可靠度與使用壽命,譬如車用電子、生醫電子和航太設備常常需要十年以上的使用壽命。因此除了出廠前的檢測外,如何確保出廠後的晶片於生命週期中使用的可靠度也是一項十分重要的議題。而一個晶片的可靠度會受到製程變異(Process variation)、電壓(Voltage)、溫度(Temperature)、以及老化(Aging)所影響,而這四個因素合稱為『匹夫塔效應』(PVTA Variation),這些因素除了會受到操作的環境的影響外,還會隨著時間而改變。在這篇論文中,我們以先前實驗室內開發的線上監測晶片內部的製成變異、電壓、和溫度之技術為基礎,進一步將老化效應納入考量,提出一個預估晶片剩餘壽命的方法,並且將軟硬體整合成一套物聯網晶片內之匹夫塔效應之雲端監測系統,其利用了物聯網設備原有的網路通訊能力。透過這樣遠距離的監控技術,一個監控系統內所照顧的物聯網設備晶片,無論在天涯海角的哪一方,雲端的控制中心都能隨時了解它的匹夫塔效應情形,以此來衡量晶片系統的健康狀況。透過這些資訊,可以早期偵測出晶片系統中匹夫塔效應的異常情形,以便在晶片功能壞掉之前就進行更換或是線上修補,進一步確保晶片系統的可靠性。
Reliability of an IC, concerning if an IC can function reliably over its designated lifetime in the field, has become more and more important in today’s safety-critical applications. It is known that reliability can be affected by PVTA effects, (Process, Voltage, Temperature, and Aging). These effects not only depend on the physical locations where an IC is operated, but also vary over time. In this work, we present a cloud-based PVTA monitoring system for the Internet of Things (IoT) devices, by taking advantage of its inherent internet connectivity. By doing so, one can know of the PVTA status of any IoT device remotely and continually at any time and any place. With the obtained information, a potential PVTA-induced failure can be alarmed in advance before it actually strikes, and thereby pre-cautious actions (such as adaptive measures, online repair, or even manual replacement) can be taken in advance to avoid unnecessary system down time.
[1] R. Saleh, S. Z. Hussain, S. Rochel, and D. Overhauser, “Clock skew verification in the presence of IR-Drop in the power distribution network,” IEEE Trans. on Computer-Aided Design, vol. 19, No. 6, pp.635-644, 2000.
[2] S. Pant, D. Blaauw, V. Zolotov, S. Sundareswaran, and R. Panda, “Vectorless Analysis of Supply Noise Induced Delay Variation,” Proc. of International Conference on Computer-Aided Design (ICCAD), pp 184-191, 2003.
[3] C. Tirumurti, S. Kundu, S. K. Susmita, and Y. S. Change, “A Modeling Approach for Addressing Power Supply Switching Noise Related Failures of Integrated Circuits,” Proc. of Design, Automation and Test in Europe Conference (DATE), pp. 1078-1083, 2004.
[4] F. Bao, M. Tehranippor, and H. Chen, “Worst-Case Critical-Path Delay Analysis Considering Power-Supply Noise,” Proc. of Asian Test Symposium (ATS), pp. 37-42, 2013.
[5] C.-H. Hsu, S.-Y. Huang, D.-M. Kwai, and Y.-F. Chou, "Worst-Case IR-Drop Monitoring with 1GHz Sampling Rate," Proc. of VLSI Design, Automation, and Test (VLSI-DAT), (April 2013).
[6] H.-X. Li, H.-C. Fu, S.-Y. Huang, J.-C. Jiang, D.-M. Kwai, and Y.-F. Chou, "Testing Power-Delivery TSVs," Proc. of Asian Symp. on Quality Electronic Design, Aug. 2015.
[7] H.-C. Fu, S.-Y. Huang, D.-M. Kwai, and Y.-F. Chou, "Temperature-Aware Online Testing of Power-Delivery TSVs," Proc. of IEEE Int'l 3D System Integration Conf., TS10.3.1 - TS10.3.6, (Sept. 2015).
[8] A. Muhtaroglu, G. Taylor, and T. Rahal-Arabi, “On-Die Droop Detector for Analog Sensing of Power Supply Noise,” IEEE J. of Solid-State Circuits, vol. 39, no. 4, pp. 651-660, April. 2004.
[9] A. Sehgal, Peilin Song, and Keith A. Jenkins, “On-Chip Real-Time Power Supply Noise Detector,” Proc. of IEEE European Solid-State Circuits Conf., pp. 380-383, Sept. 2006.
[10] R. Petersen, P. Pant, P. Lopez, A. Barton, J. Ignowski, and D. Josephson, “Voltage Transient Detection and Induction for Debug and Test,” Proc. of IEEE Int’l Test Conf., pp. 1-10, Nov. 2009.
[11] Z. Abuhamdeh, P. Pears, J. Remmers, A. L. Crouch, and B. Hannagan, “Characterize Predicted vs. Actual IR Drop in a Chip Using Scan Clocks”, IEEE Proc. of Int’l Test Conference (ITC), PP. 1-8, Oct. 2006.
[12] Z. Abuhamdeh, V. D'Alassandro, R. Pico, D. Montrone, A. Crouch, and A. Tracy, “Separating Temperature Effects from Ring-Oscillator Readings to Measure True IR-Drop On a Chip,” IEEE Proc. of Int’l Test Conference (ITC), pp. 1-10, Oct. 2007.
[13] Y. Miura, Y. Sato, Y. Miyake, and S. Kajihara, "On-chip Temperature and Voltage measurement for Field Testing", Proc. of European Test Symp., pp. 28-31, 2012.
[14] Y. Miyake, Y. Sato, S. Kajihara, and Y. Miura, “Temperature and Voltage Estimation Using Ring-Oscillator-Based Monitor for Field Test,” Proc. of Asian Test Symp., pp. 156-161, Nov. 2014.
[15] C.-W. Tzeng, S.-Y. Huang, P.-Y. Chao, and R.-T. Ding, "Parameterized All-Digital PLL Architecture and Its Compiler to Support Easy Process Migration," IEEE Trans. on VLSI Systems (TVLSI), Vol. 22, No. 3, pp. 621-630, March 2014.