研究生: |
王子森 Wang, Tzu-Sen |
---|---|
論文名稱: |
以2,4-二硝基苯肼衍生法搭配高效能液相層析儀串聯光二極體陣列偵檢器量測雙醛研究 Derivatization of Dialdehydes with 2,4-Dinitrophenylhydrazine for their Subsequent Determination by High-Performance Liquid Chromatography with Photodiode Array Detection |
指導教授: |
吳劍侯
WU, CHIEN-HOU |
口試委員: |
莊淳宇
CHUANG, CHUN-YU 鄧金培 Deng, Jin-Pei 郭俊廷 Kuo, Chun-Ting |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 分析與環境科學研究所 Institute of Analytical and Environmental Sciences |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 雙醛 、芳香醛 、DNPH 、衍生化反應 、反應速率 |
外文關鍵詞: | Dialdehyde, Aromatic aldehydes, DNPH, Derivative reaction, Rate constants |
相關次數: | 點閱:23 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
醛類在生活中經常可見,其高反應性的醛基使得它在有機合成等領域具廣泛應用,但同時也容易造成對人體的危害,雙醛則是具備二個醛基的化合物,使其經常作為交聯劑及消毒劑使用。醛的測量一般使用2,4-二硝基苯肼衍生法搭配HPLC-UV/vis進行分析,然而此方法在測量雙醛時,會因為多種衍生產物而有所限制,造成定量上的困難。本研究使用戊醛、鄰苯二甲醛、戊二醛、鄰硝基苯甲醛、2-羧基苯甲醛及2,3-萘二甲醛,在不同溶劑下進行衍生反應,測量衍生時間改變的影響以及計算反應速率常數。發現戊二醛的檢量線斜率為戊醛的2.3倍,且芳香醛衍生物的最大吸收波長會相較於直鏈碳醛從360nm紅移至390nm附近,衍生反應速率在乙腈溶劑中明顯較去離子水溶劑中快速,反應速率常數在乙腈溶劑中分別為1.4430 min-1 (對磷苯二甲醛)、0.5104 min-1 (戊醛);在去離子水溶劑中則為0.0140 min-1 (對磷苯二甲醛)、0.2885 min-1 (戊醛)。
Aldehydes are commonly chemical compounds in the living environment and they are widely applicable in organic synthesis and other fields because of their high reactivity. However, they are also hazardous to human health. Dialdehydes, compounds with two aldehyde groups, are often as cross-linking agents and disinfectants. The measurement of aldehydes employs typically 2,4-dinitrophenylhydrazine (DNPH) derivatization method coupled with HPLC-UV/vis. However, this method faces limitations in quantification when measuring dialdehydes due to the formation of mono/dime-derivative products. In this study, derivatization reactions were conducted with pentanal, o-phthalaldehyde (OPA), glutaraldehyde (GA), 2-nitrobenzaldehyde (2-NB), 2-carboxybenzaldehyde (2-CBA), and naphthalene-2,3-dicarboxaldehyde (NDA) in different solvents to investigate the effect of derivatization time and to calculate the reaction rate constants. It was found that the absorbance values of glutaraldehyde derivatives were approximately 2.3 times higher than those of pentanal derivatives. Moreover, the maximum absorption wavelength of aromatic aldehyde derivatives shifted from 360nm to 390nm compared to straight-chain aldehyde derivatives. The reaction rate constants of OPA and pentanal are 1.4431 min-1 and 0.5104 min-1 in acetonitrile (ACN) and 0.0140 min-1 and 0.2885 min-1 in water solvent, respectively.
Akbari, B., Najafi, F., Bahmaei, M., Mahmoodi, N. M., Sherman, J. H. Modeling and optimization of malondialdehyde (MDA) absorbance behavior through response surface methodology (RSM) and artificial intelligence network (AIN): an endeavor to estimate lipid peroxidation by determination of MDA. J. Chemom. 2023, 37, e3468.
Allen, C. F. H. The identification of carbonyl compounds by use of 2,4-dinitrophenylhydrazine. J. Am. Chem. Soc. 1930, 52, 2955-2959.
Allen, J. M., Allen, S. K., Baertschi, S. W. 2-Nitrobenzaldehyde: a convenient UV-A and UV-B chemical actinometer for drug photostability testing. J. Pharm. Biomed. Anal. 2000, 24, 167-178.
Anderson, S. E., Meade, B. J. Potential health effects associated with dermal exposure to occupational chemicals. Environ. Health Insights 2014, 8s1, EHI.S15258.
Baños, C. E., Silva, M. Liquid chromatography-tandem mass spectrometry for the determination of low-molecular mass aldehydes in human urine. J. Chromatogr. B 2010, 878, 653-8.
Barman, B. N. Accurate determination of aldehydes in amine catalysts or amines by 2,4-dinitrophenylhydrazine derivatization. J. Chromatogr. A 2014, 1327, 19-26.
Behforouz, M., Bolan, J. L., Flynt, M. S. 2,4-Dinitrophenylhydrazones: a modified method for the preparation of these derivatives and an explanation of previous conflicting results. J. Org. Chem. 1985, 50, 1186-1189.
Bourgeois, C., Blanc, N., Cannot, J. C., Demesmay, C. Towards a non-biased formaldehyde quantification in leather: new derivatization conditions before HPLC analysis of 2,4-dinitrophenylhydrazine derivatives. Molecules 2020, 25.
Chayen, R., Dvir, R., Gould, S., Harell, A. 1-Dimethylaminonaphthalene-5-sulfonyl hydrazine (dansyl hydrazine): a fluorometric reagent for carbonyl compounds. Anal. Biochem. 1971, 42, 283-286.
Czauderna, M., Kowalczyk, J., Marounek, M. The simple and sensitive measurement of malondialdehyde in selected specimens of biological origin and some feed by reversed phase high performance liquid chromatography. J. Chromatogr. B 2011, 879, 2251-2258.
Deng, C., Zhang, X. A simple, rapid and sensitive method for determination of aldehydes in human blood by gas chromatography/mass spectrometry and solid-phase microextraction with on-fiber derivatization. Rapid Commun. Mass Spectrom. 2004, 18, 1715-1720.
Douny, C., Tihon, A., Bayonnet, P., Brose, F., Degand, G., Rozet, E., Milet, J., Ribonnet, L., Lambin, L., Larondelle, Y., Scippo, M.-L. Validation of the analytical procedure for the determination of malondialdehyde and three other aldehydes in vegetable oil using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) and application to linseed oil. Food Anal. Methods 2015, 8, 1425-1435.
Driscoll, J. N. Evaluation of a new photoionization detector for organic compounds. J. Chromatogr. A 1977, 134, 49-55.
El-Maghrabey, M., Suzuki, H., Kishikawa, N., Kuroda, N. A sensitive chemiluminescence detection approach for determination of 2,4-dinitrophenylhydrazine derivatized aldehydes using online UV irradiation – luminol CL reaction. Application to the HPLC analysis of aldehydes in oil samples. Talanta 2021, 233, 122522.
Fang, S., Liu, Y., He, J., Zhang, L., Liyin, Z., Wu, X., Sun, H., Lai, J. Determination of aldehydes in water samples by coupling magnetism-reinforced molecular imprinting monolith microextraction and non-aqueous capillary electrophoresis. J. Chromatogr. A 2020, 1632, 461602.
Faramarz Tayyari, S., L. Speakman, J., B. Arnold, M., Cai, W., Behforouz, M. A comprehensive investigation of variations in melting ranges and NMR data of 2,4-dinitrophenylhydrazine derivatives. J. Chem. Soc., Perkin Trans. 2 1998, 2195-2200.
Ferreira, I. M., Carvalho, D. O., da Silva, M. G., Guido, L. F. Gas-diffusion microextraction (GDME) combined with derivatization for assessing beer staling aldehydes: validation and application. Foods 2021, 10, 1704.
Filby, W. G., Guenther, K., Penzhorn, R. D. Improved method for the synthesis of aliphatic sulfinic acids. J. Org. Chem. 1973, 38, 4070-4071.
Galbavy, E. S., Ram, K., Anastasio, C. 2-Nitrobenzaldehyde as a chemical actinometer for solution and ice photochemistry. J. Photochem. Photobiol., A 2010, 209, 186-192.
Gonçalves, L. M., Magalhães, P. J., Valente, I. M., Pacheco, J. G., Dostálek, P., Sýkora, D., Rodrigues, J. A., Barros, A. A. Analysis of aldehydes in beer by gas-diffusion microextraction: characterization by high-performance liquid chromatography-diode-array detection-atmospheric pressure chemical ionization-mass spectrometry. J. Chromatogr. A 2010, 1217, 3717-22.
Gonzalez Quevedo, P., Rigby, E. L., Kearney, S., Saylor, R. A. Optimized derivatization of primary amines with the fluorogenic reagent naphthalene-2,3-dicarboxaldehyde toward reproducible quantitative analysis in biological systems. Anal Bioanal Chem 2023, 415, 4297-4306.
Ha, P. T. T., An, V. T. T., Khanh, C. C. High performance liquid chromatography analytical method for glutaraldehyde determination in disinfectants. Vietnam J. Food Control 2022, 5, 160.
He, J., Liu, J., Liu, Y., Liyin, Z., Wu, X., Song, G., Hou, Y., Wang, R., Zhao, W., Sun, H. Trace carbonyl analysis in water samples by integrating magnetic molecular imprinting and capillary electrophoresis. RSC Adv. 2021, 11, 32841-32851.
Hemmendinger, M., Sauvain, J.-J., Hopf, N. B., Wild, P., Suárez, G., Guseva Canu, I. Method validation and characterization of the associated uncertainty for malondialdehyde quantification in exhaled breath condensate. Antioxidants 2021, 10, 1661.
Ho, S. S. H., Yu, J. Z. Determination of airborne carbonyls: comparison of a thermal desorption/GC method with the standard DNPH/HPLC method. Environ. Sci. Technol. 2004, 38, 862-870.
Jin, X. C., Ballentine, R. M., Gardner, W. P., Melvin, M. S., Pithawalla, Y. B., Wagner, K. A., Avery, K. C., Sharifi, M. Determination of formaldehyde yields in E-cigarette aerosols: an evaluation of the efficiency of the DNPH derivatization method. Separations 2021, 8, 151.
Kim, B., Jung, W., Kho, Y. Quantification of malondialdehyde in human urine by HPLC-DAD and derivatization with 2,4-dinitrophenylhydrazine. Bull. Korean Chem. Soc. 2017, 38, 642-645.
Kishikawa, N., El-Maghrabey, M. H., Kuroda, N. Chromatographic methods and sample pretreatment techniques for aldehydes determination in biological, food, and environmental samples. J. Pharm. Biomed. Anal. 2019, 175, 112782.
Korchazhkina, O., Exley, C., Andrew Spencer, S. Measurement by reversed-phase high-performance liquid chromatography of malondialdehyde in normal human urine following derivatisation with 2,4-dinitrophenylhydrazine. J. Chromatogr. B 2003, 794, 353-62.
Laghrib, F., Lahrich, S., Mhammedi, M. A. E. Review—recent advances in direct and indirect methods for sensing carbonyl compounds aldehydes in environment and foodstuffs. J. Electrochem. Soc. 2019, 166, B1543.
Lappin, G., Clark, L. Colorimetric method for determination of traces of carbonyl compounds. Anal. Chem. 1951, 23, 541-542.
Lkhagva, A., Shen, C.-C., Leung, Y.-S., Tai, H.-C. Comparative study of five different amine-derivatization methods for metabolite analyses by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2020, 1610, 460536.
Ma, L., Cui, Y., Wang, F., Liu, H., Cheng, W., Peng, L., Brennan, C., Benjakul, S., Xiao, G. Fast and sensitive UHPLC-QqQ-MS/MS method for simultaneous determination of typical α,β-unsaturated aldehydes and malondialdehyde in various vegetable oils and oil-based foods. Food Chem. 2023, 400, 134028.
Ma, L., Liu, G. Simultaneous analysis of malondialdehyde, 4-Hydroxy-2-hexenal, and 4-hydroxy-2-nonenal in vegetable oil by reversed-phase high-performance liquid chromatography. J. Agric. Food Chem. 2017, 65, 11320-11328.
Matei, A., Puscas, C., Patrascu, I., Lehene, M., Ziebro, J., Scurtu, F., Baia, M., Porumb, D., Totos, R., Silaghi-Dumitrescu, R. Stability of glutaraldehyde in biocide compositions. Int. J. Mol. Sci. 2020, 21, 3372.
Mateos, R., Lecumberri, E., Ramos, S., Goya, L., Bravo, L. Determination of malondialdehyde (MDA) by high-performance liquid chromatography in serum and liver as a biomarker for oxidative stress: Application to a rat model for hypercholesterolemia and evaluation of the effect of diets rich in phenolic antioxidants from fruits. J. Chromatogr. B 2005, 827, 76-82.
Naumann, B. D., Arnold, S. F. Setting surface wipe limits for skin sensitizers. Toxicol. Ind. Health 2019, 35, 614-625.
Padova, C. D., Alderman, J., Lieber, C. S. Improved methods for the measurement of acetaldehyde concentrations in plasma and red blood cells. Alcohol: Clin. Exp. Res. 1986, 10, 86-89.
Rammouz, G., Lacroix, M., Garrigues, J. C., Poinsot, V., Couderc, F. The use of naphthalene‐2, 3‐dicarboxaldehyde for the analysis of primary amines using high‐performance liquid chromatography and capillary electrophoresis. Biomed. Chromatogr. 2007, 21, 1223-1239.
Rogers, C. A., Gaskin, S. E., Thredgold, L. D., Pukala, T. L. An approach to quantify ortho-phthalaldehyde contamination on work surfaces. Ann. Work Expo. Health 2023, 67, 886–894.
Rutala, W., Weber, D., in, 2010, pp. 3677-3695.
Simon, P., Lemacon, C. Determination of aliphatic primary and secondary amines and polyamines in air by high-performance liquid chromatography. Anal. Chem. 1987, 59, 480-484.
Takigawa, T., Endo, Y. Effects of glutaraldehyde exposure on human health. J. Occup. Health 2006, 48, 75-87.
Tišler, T., Zagorc-Končan, J. Comparative assessment of toxicity of phenol, formaldehyde, and industrial wastewater to aquatic organisms. Water, Air, Soil Pollut. 1997, 97, 315-322.
Tucker, S. P. Determination of ortho-phthalaldehyde in air and on surfaces. J. Environ. Monit. 2008, 10, 1337-49.
Tucker, S. P. Development, evaluation and comparison of two independent sampling and analytical methods for ortho-phthalaldehyde vapors and condensation aerosols in air. Anal. Methods 2014, 6, 2592-2607.
Uchiyama, S., Ando, M., Aoyagi, S. Isomerization of aldehyde-2,4-dinitrophenylhydrazone derivatives and validation of high-performance liquid chromatographic analysis. J. Chromatogr. A 2003, 996, 95-102.
Uchiyama, S., Inaba, Y., Kunugita, N. Derivatization of carbonyl compounds with 2,4-dinitrophenylhydrazine and their subsequent determination by high-performance liquid chromatography. J. Chromatogr. B 2011, 879, 1282-9.
Uchiyama, S., Matsushima, E., Aoyagi, S., Ando, M. Measurement of acid-catalyzed isomerization of unsaturated aldehyde-2,4-dinitrophenylhydrazone derivatives by high-performance liquid chromatography analysis. Anal. Chim. Acta 2004, 523, 157-163.
Uchiyama, S., Matsushima, E., Aoyagi, S., Ando, M. Simultaneous determination of C1-C4 carboxylic acids and aldehydes using 2,4-dinitrophenylhydrazine-impregnated silica gel and high-performance liquid chromatography. Anal. Chem. 2004, 76, 5849-54.
Uchiyama, S., Matsushima, E., Tokunaga, H., Otsubo, Y., Ando, M. Determination of orthophthalaldehyde in air using 2,4-dinitrophenylhydrazine-impregnated silica cartridge and high-performance liquid chromatography. J. Chromatogr. A 2006, 1116, 165-171.
Uchiyama, S., Sakamoto, H., Ohno, A., Inaba, Y., Nakagome, H., Kunugita, N. Reductive amination of glutaraldehyde 2,4-dinitrophenylhydrazone using 2-picoline borane and high-performance liquid chromatographic analysis. Anlst. 2012, 137, 4274-4279.
van Leeuwen, S. M., Hendriksen, L., Karst, U. Determination of aldehydes and ketones using derivatization with 2,4-dinitrophenylhydrazine and liquid chromatography-atmospheric pressure photoionization-mass spectrometry. J. Chromatogr. A 2004, 1058, 107-12.
Wang, Y., Wu, Q., Muskhelishvili, L., Davis, K., Wynne, R., Tripathi, P., Bryant, M. S., Rua, D., Cao, X. Toxicity of ortho-phthalaldehyde aerosols in a human In vitro airway tissue model. Chem. Res. Toxicol. 2021, 34, 754-766.
Wheeler, D. D., Young, D. C., Erley, D. S. Reactions of phthalaldehydic acid. J. Org. Chem. 1957, 22, 547-556.
Wiesenthal, K., Jehlar, A., Que Hee, S. S., Wiesenthal, K., Jehlar, A., Que Hee, S. S. Synthesis of the o-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine oximes of selected carbonyl compounds and their determination by liquid chromatography with ultraviolet detection. J. AOAC Int. 2000, 83, 859-69.
Williams, J., Li, H., Ross, A. B., Hargreaves, S. P. Quantification of the influence of NO2, NO and CO gases on the determination of formaldehyde and acetaldehyde using the DNPH method as applied to polluted environments. Atmos. Environ. 2019, 218, 117019.
Xu, H., Wang, S., Zhang, G., Huang, S., Song, D., Zhou, Y., Long, G. A novel solid-phase microextraction method based on polymer monolith frit combining with high-performance liquid chromatography for determination of aldehydes in biological samples. Anal. Chim. Acta 2011, 690, 86-93.
Yamamoto, S., Takeuchi, A., Ishidao, T., Ohkuma, H., Ichiba, M., Hori, H. Development of a measurement method to determine the ceiling exposure concentration of ortho-phthalaldehyde handling workers. J. Occup. Health 2020, 62, e12105.
Yamamoto, S., Takeuchi, A., Suzuki, Y., Endo, Y., Eitaki, Y., Katagiri, H., Takahashi, J., Yasugi, T., Takigawa, T., Ogino, K. Optimization of the determination of ortho-phthalaldehyde in air by derivatization with 2,4-dinitorophenylhyrazine (DNPH). J. Occup. Health 2009, 51, 386-390.
Yilmaz, B., Asci, A., Kucukoglu, K., Albayrak, M. Simple high-performance liquid chromatography method for formaldehyde determination in human tissue through derivatization with 2,4-dinitrophenylhydrazine. J. Sep. Sci. 2016, 39, 2963-2969.
Yu, X., Pei, J., Bi, L. Electrochemical sensor based on polyoxometalate immobilized using a layer-by-layer assembly process to detect 2,4-dinitrophenylhydrazine. New J. Chem. 2022, 46, 10777-10786.
Zhang, K., Li, S., Liu, C., Wang, Q., Wang, Y., Fan, J. A hydrophobic deep eutectic solvent-based vortex-assisted dispersive liquid-liquid microextraction combined with HPLC for the determination of nitrite in water and biological samples. J. Sep. Sci. 2019, 42, 574-581.
Zhang, X., Kong, Y., Cao, J., Li, H., Gao, R., Zhang, Y., Wang, K., Li, Y., Ren, Y., Wang, W. A sensitive simultaneous detection approach for the determination of 30 atmospheric carbonyls by 2,4-dinitrophenylhydrazine derivatization with HPLC-MS technique and its preliminary application. Chemosphere 2022, 303, 134985.
林奕良, 碩士論文. 國立清華大學, 新竹市, 2005.
葉雲臺, 碩士論文. 國立清華大學, 新竹市, 2009.