簡易檢索 / 詳目顯示

研究生: 阮成專
Chuyen,Nguyen Thanh
論文名稱: Distributed Learning for Localization Applications in Wireless Sensor Networks
指導教授: 洪樂文
Hong,Yao-Win Peter
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2008
畢業學年度: 97
語文別: 英文
論文頁數: 43
中文關鍵詞: 分散式學習定位無線感測網路多跳躍路由
外文關鍵詞: Distributed Learning, Localization, Wireless Sensor Networks, Multi-hop Routing
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Distributed learning-based localization schemes for wireless sensor networks are studied in
    this thesis. Here, we first review the theory on distributed learning with abstention and
    then apply the theory to distributed localization applications that utilize only the hop-count
    information between nodes to perform the localization task. Specifically, we partition the
    network into a number of partitions based on the sensors' locations and determine which
    class each sensor falls into. We consider a network with a number of beacon nodes that
    have perfect knowledge of its own coordinates and utilize their knowledge as training data to
    perform the above classification. In this work, we propose three approaches for distributed
    learning based on the different features that is used to determine the class of each node,
    namely, the hop-count (HC) method, the density-aware hop-count length (DHL) method,
    and the distance vector (DV) method. These methods are compared under different system
    parameters and also compared with the triangulation method that is often employed in the
    literature. The importance of beacon placement as well as the effect of transmission errors
    is also discussed.


    1 Introduction 1 2 Distributed Learning in Wireless Sensor Networks 4 3 Distributed Localization Using Hop-Counts 7 3.1 Algorithms and Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2 Determination of Hop-Counts . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3.1 Mean Square Error vs Percentage of Beacon Nodes . . . . . . . . . . 13 3.3.2 MSE vs Number of Partitions . . . . . . . . . . . . . . . . . . . . . . 15 3.3.3 Localization with only K-hop Neighbors . . . . . . . . . . . . . . . . 19 4 Distributed Localization Using Estimated Hop-Distances 21 4.1 Localization with Estimated Hop-Distances . . . . . . . . . . . . . . . . . . . 23 4.2 DHL and DV Methods Using Triangulation . . . . . . . . . . . . . . . . . . 27 4.3 Beacons Placements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ii 5 Distributed Localization over Noisy Channels 34 6 Conclusion 39

    [1] P. K. Varshney, \Distributed Detection and Data Fusion", Springer-Verlag, 1997.
    [2] R. Viswanathan and P. K. Varshney, \Distributed detection with multiple sensor: Part
    I- Fundamentals", Processing of the IEEE, vol. 85, no. 1, pp. 54{63, Jan. 1997.
    [3] A. Ribeiro and G. B. Giannakis, \Bandwidth-constrained distributed estimation for wire-
    less sensor networks", IEEE Trans. on signal processing, vol.54, no. 3, Mar., 2006.
    [4] L. Doherty, L. E. Ghaoui, and K. S. J. Pister, \Convex position estimation in wireless
    sensor networks", Proc. IEEE INFOCOM '01, Apr., 2001.
    [5] Y. Shang, W. Ruml, Y. Zhang, and M.P.J. Fromherz, \Localization from mere connec-
    tivity", Proc. IEEE ACM MobiHoc, 2003.
    [6] T. S. Han and S. Amari, \Statistical inference under multiterminal data compression",
    IEEE Trans. Inform. Theory, vol.44, no. 6, pp. 2300{2324, 1998.
    [7] M. Gastpar, M. Vetterli, and P. L. Dragotti, \Sensing reality and communicating bits: A
    dangerous liaison", IEEE signal processing magazine, vol.22, no. 4, pp. 70{83,June 2006.
    [8] V. Delouille, R. Neelamani, and R. Baraniuk, \Robust distributed estimation in sensor
    networks using the embedded polygons algorithm", in Proc. 3rd Int. Symp. Information
    Processing Sensor Networks, Berkeley, CA, Apr, 2003.
    [9] D. Blatt and A. Hero, \Distributed maximum likelihood estimation for sensor networks",
    in Proc. Int. Conf. Acoustics, Speech, Signal Processing, Montreal, Quebec, Canada, May
    2004, pp. 929{932.
    [10] J. F. Chamberland and V. V. Veeravalli, \Asymptotic results for decentralized detection
    in power constrained wireless sensor networks", IEEE J. Select Areas Commun., vol. 22,
    no. 6, pp. 1007{1015, 2004
    [11] Luc Devroye, \A probabilistic theory of pattern recognition", Springer-Verlag, 1996.
    [12] Joel B. Predd and Sanjeev R. Kulkarni and H. Vincent Poor, \Consistency in mod-
    els for distributed learning under communication constraints", IEEE Transactions on
    information theory, vol. 52, no. 1, pp. 52{63, Jan. 2006.
    [13] Joel B. Predd, Sanjeev R. Kulkarni and H. Vincent Poor, \Distributed learning in
    wireless sensor networks", IEEE signal processing magazine, pp. 56{69,July 2006.
    [14] S. R. Kulkarni, G. Lugosi and S. S. Venkatesh, \Learning pattern classi‾cation-a
    survey", IEEE transactions on information theory., vol. 44, no. 6, pp. 2178{2206, Oct.
    1998.
    [15] L. Doherty, K. S. J. Pister and L. El Ghaoui, \Convex position estimation in wireless
    sensor networks", Proceeding of IEEE infocom., 2001.
    [16] Dragos Niculescu and Badri Nath, \Ad hoc positioning system (APS)", IEEE INFO-
    COM, 2003.
    [17] Sau Yee Wong and Joo Ghee Lim, \Density-Aware hop-count localization (DHL) in
    wireless sensor networks with variable density", IEEE Communications Society WCNC.,
    2005.
    [18] A. Savvides, W. L. Garber, and R. L. Moses, \An analysis of error inducing parameters
    in multihop sensor node localization", IEEE Transactions on mobile computing., vol.4,
    no. 6, Sep. 2005.
    [19] D. Niculescu and B. Nath, \DV Based Positioning in Ad hoc Networks", Journal of
    Telecommunication Systems., 2003.
    [20] M. Yin, J. Shu, L. Liu and H. Zhang, \The in°uence of beacon on DV-hop in wireless
    sensor networks", IEEE Grid and cooperative computing workshops., 2006.
    [21] N. Bulusu, V. Bychkovskiy, D. Estrin and J. Heidemann, \Scalable, Ad hoc deployable
    RF-based localization", IEEE ICIT., 2007.
    [22] D. Zhao,Y. Men and L. Zhao, \A hop-distance algorithm for self-localization of wireless
    sensor networks", IEEE ACIS., 2007.
    [23] J. Blumenthal, F. Reichenbach, D. Timmermann, \Position estimation in ad hoc wire-
    less sensor networks with low complexity", Technical report, Institute of applied mi-
    croeletronic and computer science., University of Rostock.
    [24] G. Mao, B. Fidan, B. D. O. Anderson, \Wireless sensor network localization techniques",
    ELSEVIER journal paper, Computer Networks., no. 43, pp. 499{518, 2003.
    [25] K. Langendoen, N. Reijers, \Distributed localization in wireless sensor networks: a
    quantitative comparison", ELSEVIER journal paper, Computer Networks., no. 51, pp.
    2529{2553, Jan. 2007.
    [26] Duc A. Tran, and Thinh Nguyen \Localization in wireless sensor networks based on
    support vector machines", IEEE transaction on parallel and distributed system., vol. 19,
    no. 7, July 2008.
    [27] J. Blumenthal, R. Grossmann, F. Golatowski and D. Timmermann, \Weighted centroid
    localization in Zigbee-based Sensor Networks", IEEE WISP Intelligent signal processing.,
    Oct., 2007
    [28] G. L. Stuber, \Principles of mobile communication", Second edition., Boston, Kluwer
    Academic Pulishers, 2001
    [29] J. E. Wieselthier, G. D. Nguyen, and A. Ephremides, \On the construction of energy-
    e±cient broadcast and multicast trees in wireless networks", in IEEE Proceedings on
    INFOCOM, vol. 2, 2000, pp. 585{594.
    [30] R. Viswanathan and Arif Ansari, \Distributed Detection of a Signal in Generalized
    Gaussian Noise", IEEE transaction on Acoustics. Speech and Signal Processing., vol. 37,
    no. 5, May, 1989.
    [31] Sawasd Tantaratana and Asis Nasipuri, \Two-Stage Wilcoxon Detectors Using Condi-
    tional Tests", IEEE transactions on information theory., vol. 38, no. 3, May, 1992
    [32] M. M. Al-Ibrahim and P. K. Varshney, \A decentralized sequential test with data fu-
    sion", in Proc. 1989 American Control Conf., 1989.
    [33] J. Han, P. K. Varshney, and V. C. Vannicola, \Some results on distributed nonpara-
    metric detection", in Proc. 29th IEEE Conf. Decision and Control, 1990.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE