簡易檢索 / 詳目顯示

研究生: 蔡立偉
Tsai, Li-Wei
論文名稱: 以化學氣相沉積法成長單層石墨烯及其應用於可撓式透明場效電晶體之研究
Synthesis of single layer graphene by chemical vapor deposition and investigation on graphene-based flexible transparent field-effect transistor
指導教授: 戴念華
Tai, Nyan-Hwa
口試委員: 林宏一
Lin, Hung-Yi
何詠碩
Ho, Yung-Shou
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 102
中文關鍵詞: 石墨烯電解拋光銅箔化學氣相沉積場效電晶體可撓曲透明
外文關鍵詞: graphene, electropolish, Cu foil, chemical vapor deposition, Field-effect transistor, flexible, transparent
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 單層石墨烯(single-layer graphene)為一種二維材料,具有高化學穩定性、高載子遷移率、獨特的光學性質且尺寸達奈米等級,對於未來取代以矽為主的電晶體有著無限的潛力,故以石墨烯為主的電晶體製程必須與目前半導體工業的製程其相容性要高。本研究先以化學氣相沉積系統在銅箔上成長大面積的單層石墨烯,再將石墨烯轉印至Polyethylene Terephthalate(PET)基板上製作可撓性透明場效電晶體。因為單層石墨烯是以薄膜的形式沿著銅箔的表面成長,因此銅的表面形貌會對單層石墨烯的成長品質、後續轉印及元件性質造成影響,為了提升電晶體核心中的石墨烯之品質,本研究利用電解拋光的技術製備高平坦化的銅箔以成長石墨烯,成功降低了石墨烯的缺陷,進而提升了電晶體的性能。藉由拉曼光譜儀、場發射電子顯微鏡、光學顯微鏡探討各參數對石墨烯製程的影響及轉印的結果,以原子力顯微鏡量測單層石墨烯在SiO2/Si基板上的厚度,並使用四點探針量測系統、紫外光-可見光光譜儀分析石墨烯在PET基板上的光電性質,最後再以多探針量測系統量測電晶體撓曲前後的性質。本研究成功的使用電解拋光技術提升了石墨烯電晶體元件的性質,其載子遷移率較未使用電解拋光技術所製作的元件高出2到3倍。


    Single-layer graphene, a two-dimension carbon material which possesses high chemical stability, high carrier mobility, unique optical property, and a dimension with nano-scale level, is promising for the application in graphene-based devices. To partially replace the Si-based devices, it is requested that the fabrication process for the graphene-based device should be compatible with the technology used in present semiconductor industry. In this work, large-area single graphene was synthesized on Cu foil by low pressure chemical vapor deposition. The graphene films were transferred from Cu foil to polyethylene terephthalate(PET) using PMMA anisole solution for fabricating flexible transparent graphene-based field-effect transistors. The electropolish method was used to reduce the roughness of the Cu foil. Roughness of the Cu foil surface is an important factor that influences the morphology of graphene films on transferred substrate and affects electronic transport property of the graphene-based devices. The influences of the electropolish process on roughness of the transferred graphene were investigated by using Raman spectrum, scanning electron microscope, and optical microscope; and we found that the electropolish process improves the electronic transport property of the graphene-based devices. Carrier mobility of the graphene-based devices was increased 2-3 times when the electropolish process was adopted. Variations on the electronic transport property of the graphene-based devices before and after bending were tested and the results are discussed.

    目錄 摘要 I 目錄 V 圖目錄 IX 第一章 概述與動機 1 第二章 文獻回顧及理論基礎 3 2.1石墨烯簡介 3 2.1.1石墨烯的結構及能帶結構 3 2.1.2石墨烯電晶體特性及相關文獻 5 2.2石墨烯的製備方法 9 2.2.1機械剝離法 9 2.2.2碳化矽裂解法 10 2.2.3化學還原法 11 2.2.4化學氣相沉積法 12 2.3銅箔的電解拋光 15 2.3.1電解拋光銅的原理 15 2.3.2以電解拋光銅箔成長石墨烯 18 2.4判定石墨烯厚度的儀器 18 2.4.1穿透式電子顯微鏡 18 2.4.2掃描式原子探測顯微鏡 19 2.4.3紫外光/可見光/紅外光譜儀 19 2.4.4光學顯微鏡 20 2.4.5拉曼光譜儀 20 第三章 實驗步驟與研究方法 40 3.1實驗步驟流程 40 3.2實驗步驟 41 3.2.1銅箔前處理 41 3.2.2化學氣相沉積製程 41 3.2.3轉印製程 42 3.2.4電解拋光銅箔 43 3.2.5黃光製程及元件製作 43 3.3試片分析 44 3.3.1拉曼光譜分析 44 3.3.2光學顯微鏡 44 3.4.3場發射掃描式電子顯微鏡 45 3.4.4掃描式原子探測顯微鏡 45 3.4.5四點探針量測系統 46 3.4.5紫外光-可見光光譜儀 46 3.4.6 電壓與電流量測分析 46 第四章實驗結果與討論 53 4.1化學氣相沉積法製程參數對於石墨烯之影響 53 4.1.1銅箔前處理 - 醋酸的作用 53 4.1.2反應氣體比例的影響 54 4.1.3高溫退火的影響 58 4.1.4成長溫度的影響 58 4.1.5不同降溫速率之影響 59 4.1.6均勻性分析結果 59 4.2轉印製程 60 4.3轉印至任意基板之分析 61 4.3.1拉曼光譜分析: 61 4.3.2掃描式原子探測顯微鏡分析: 62 4.3.3紫外光-可見光光譜分析: 63 4.3.4四點探針分析: 64 4.4探討時間、電壓及電解液組成對電解拋光銅的影響 64 4.4.1時間的調控 64 4.4.2電壓的調控 65 4.4.3電解液的組成 65 4.5探討有無電解拋光銅箔對於石墨烯成長及其後續結果之影響 67 4.5.1 成長石墨烯於銅箔基板上的差異 67 4.5.2轉印至SiO2/Si基板的差異 69 4.5.3紫外光-可見光光譜分析 71 4.6可撓式透明石墨烯場效電晶體電性量測 72 第五章 結論與未來展望 97 參考文獻 98   圖目錄 圖2 - 1 碳的同素異形體,由左至右分別為三維的鑽石及石墨;二維的石墨烯;一維的奈米奈管;零維的巴克球 23 圖2 - 2 (a)石墨烯的蜂巢結構;(b)石墨烯的倒置晶格空間及其布理淵區 23 圖2 - 3石墨烯的能帶結構圖 24 圖2 - 4石墨烯的電阻-閘極電壓雙極曲線,小圖為費米能階在能階上的變化 24 圖2 - 5傳統金氧半場效電晶體:(a)N型通道的金氧半場效電晶體結構橫截面示意圖;(b)金氧半場效電晶體的汲極電流-閘極電壓曲線圖 25 圖2 - 6石墨烯場效電晶體結構橫截面示意圖:(a)背閘極;(b)雙閘極;(c)上閘極 26 圖2 - 7石墨烯電晶體的汲極電流-閘極電壓曲線圖 26 圖2 - 8 N型石墨烯元件電性:(a)N型石墨烯元件SEM圖;(b) N型石墨烯元件示意圖;(c)(d)純石墨烯元件及N型石墨烯元件在不同閘極電壓下的Ids/Vds曲線;(e)純石墨烯元件及N型石墨烯元件之轉換曲線 27 圖2 - 9用化學氣相沉積法所成長的晶圓尺寸大小的均勻雙層石墨烯: (a)為2 in. × 2 in.大小的雙層石墨烯轉印在SiO2(280 nm)/Si之照片;(b)雙層石墨烯膜邊緣的光學顯微圖;(c)圖紋化的雙層石墨烯轉印在SiO2(280 nm)/Si基板之AFM圖(內插小圖為大圖中虛線的高度顯示); (d)化學氣相沉積法成長的雙層石墨烯(紅線)、機械剝離法製成的雙層石墨烯(藍線)、機械剝離法製成的單層石墨烯(綠線)之拉曼圖,其雷射波長為514 nm 28 圖2 - 10雙閘極雙層石墨烯場效電晶體的電性傳輸研究:(a)為電晶體的SEM圖及結構示意圖(虛線區域為上閘極下方面積為1 μm x 1 μm的雙層石墨烯);(b)在溫度6.5K下的2維R□-Vtg-Vbg關係圖;(c)在固定Vbg下R□-Vtg關係圖 不同的曲線為Vbg以每20 V的差值從-100 V到140 V;(d)每個實驗數據點為圖(c)每一曲線的最高值(R□, Dirac)之Vtg-Vbg關係圖,其實驗數據點的趨勢可用一直線來擬合 29 圖2 - 11在可撓性基板上以離子膠體為閘極絕緣層的石墨烯FET之電性和機械性質:(a)在塑膠基板上的陣列石墨烯FET ;(b)在塑膠基板上石墨烯FET轉換及輸出特性曲線;(c)陣列石墨烯FET電洞電子遷移率分佈圖;(d)彎曲半徑與載子遷移率關係圖 30 圖2 - 12石墨烯薄膜:(a) 為厚度3 nm的多層石墨烯薄片在氧化矽表面上的OM圖;(b)為圖(a)多層石墨烯薄片邊緣的AFM圖,其影像範圍為2 μm X 2μm;(c) 為單層石墨烯的AFM圖,中央部份為0.8 nm,左下重疊區塊為1.2 nm,左上重疊區塊為2.5 nm;(d)石墨烯元件的SEM圖 31 圖2 - 13為碳化矽(0001)方向成長出來的石墨烯STM圖 32 圖2 - 14 將石墨經氧化處理成氧化石墨烯,再以快速升溫法還原剝離 32 圖2 - 15石墨烯於金屬表面「析出成長」示意圖 33 圖2 - 16不同冷卻速率下石墨烯於鎳表面上析出的拉曼光譜圖 33 圖2 - 17 (a)-(f)石墨烯轉印至SiO2/Si基板的SEM、光學、拉曼及拉曼mapping圖(中間圓圈-單層石墨烯;上方圓圈-雙層石墨烯;下方圓圓及箭頭-三層石墨烯) 34 圖2 - 18 (a)成長機制圖(1)成核,(2)成長跨接;(b)(c)銅箔上成核點之SEM圖;(d)銅箔上成核點之OM圖及拉曼訊號圖 34 圖2 - 19電解拋光機制微觀示意圖 35 圖2 - 20電解拋光銅的PD曲線圖 35 圖2 - 21不同電壓參數的電解拋光銅之電流密度-拋光時間曲線圖,其中兩小圖為拋光後的SEM圖,分別為1.3 V(整正區)及2.0 V(氧氣生成區) 36 圖2 - 22 (a)(b)不同倍率下的石墨烯/銅箔之OM圖;(c)(d)不同倍率下的石墨烯/SiO2/Si之OM圖,圖(d)內有A點位置之拉曼訊號圖 36 圖2 - 23 (a)將成長在電解拋光銅箔上的石墨烯轉印至SiO2/Si 之OM圖;(b)為圖(a)OM圖A點B點之拉曼訊號圖 37 圖2 - 24單層石墨烯在SiO2/Si 上之AFM圖 37 圖2 - 25單層石墨烯與雙層石墨烯在空氣中的OM圖及透光度-距離曲線圖,右上小圖為石墨烯轉印至有孔洞的基板上 38 圖2 - 26 (a)(b)(上排圖)不同層數石墨烯在300 nm厚的氧化矽上之白光及不同波長之OM圖 (c)(下排圖)不同層數石墨烯在200 nm厚的氧化矽上之白光及不同波長之OM圖 38 圖2 - 27 (a)石墨及單層石墨烯之514 nm拉曼訊號比較圖;(b)不同層數石墨烯之514 nm拉曼2D-band訊號比較圖;(c) 不同層數石墨烯之633 nm拉曼2D-band訊號比較圖 39 圖3 - 1實驗流程示意圖 47 圖3 - 2低壓化學氣相沉積系統示意圖 48 圖3 - 3低壓化學氣相沉積製程流程圖 48 圖3 - 4 PMMA轉印法流程示意圖 49 圖3 - 5電解拋光系統示意圖 49 圖3 - 6上閘極式可撓式透明石墨烯場效電晶體製備流程示意圖 50 圖3 - 7 單面曝光機(EVG 620) 51 圖3 - 8拉曼光譜儀(Raman, Horiba HR 800) 51 圖3 - 9場發射掃描式電子顯微鏡(FESEM, JEOL JSM-6500F) 52 圖3 - 10掃描式原子探測顯微鏡(SPM, Scanning Probe Microscope) 52 圖4 - 1 (a)未作任何前處理直接成長石墨烯的銅箔表面OM圖;(b)將銅浸泡在濃度1 M醋酸30分鐘後成長石墨烯的銅箔表面OM圖;(c)將銅浸泡在冰醋酸30分鐘後成長石墨烯的銅箔表面OM圖;(d)由下至上分別為圖(a)(b)(c)之拉曼訊號圖(632 nm) 76 圖4 - 2成長石墨烯於銅箔上之溫度-時間關係圖 76 圖4 - 3 以200 sccm Ar、5 sccm CH4為固定參數,改變H2流量所成長石墨烯之拉曼訊號圖(632 nm) 77 圖4 - 4 (a)以200 sccm Ar、100 sccm H2為固定參數,改變CH4流量所成長石墨烯之拉曼訊號圖(632 nm) 圖(b)5 sccm CH4(c)10 sccm CH4 (d)(e)30 sccm CH4為成長完石墨烯之銅箔表面OM圖 78 圖4 - 5 成長完石墨烯之銅箔表面SEM圖(1000倍) 79 圖4 - 6成長完石墨烯之銅箔表面SEM圖(5000倍) 79 圖4 - 7 不同成長溫度的石墨烯之拉曼訊號圖(632 nm) 80 圖4 - 8 為不同降溫速率所成長的石墨烯之拉曼訊號圖(632 nm) 80 圖4 - 9 (a)成長完石墨烯的銅箔表面OM圖及二維拉曼分析所選定的網狀區域;(b)為圖(a)網狀區域的二維拉曼分析圖(632 nm) 81 圖4 - 10 石墨烯轉印至SiO2/Si基板:(a)波長514 nm;(b)波長632 nm拉曼訊號圖;(c)OM圖 82 圖4 - 11石墨烯轉印至PET基板:(a)拉曼訊號圖(632 nm),小圖為G-band位置放大圖;(b)PET基板表面之OM圖;(c)石墨烯在PET基板表面上之OM圖 83 圖4 - 12石墨烯轉印至SiO2/Si基板之AFM圖 84 圖4 - 13石墨烯轉印至PET基板之透明度分析 85 圖4 - 14 電解拋光銅箔之AFM及SEM影像圖:(a)無電解拋光處理;(b)電壓1.5 V,時間10分鐘;(c)電壓1.5 V,時間20分鐘(d) 電壓1.5 V,時間30分鐘 86 圖4 - 15電解拋光銅箔之AFM及SEM影像圖:(a)電壓1.5 V,時間20分鐘;(b)電壓1.0 V,時間20分鐘 87 圖4 - 16電解拋光銅箔之AFM及SEM影像圖:(a)電壓1.5 V,時間20分鐘,無添加劑;(b)電壓1.0 V,時間20分鐘,有添加劑 87 圖4 - 17 (a)成長石墨烯於電解拋光銅箔上之OM圖;(b)成長石墨烯於未電解拋光銅箔上之OM圖 88 圖4 - 18 石墨烯成長於電解拋光銅箔上之SEM圖(1000倍) 88 圖4 - 19石墨烯成長於電解拋光銅箔上之SEM圖(5000倍) 89 圖4 - 20石墨烯成長於電解拋光銅箔上之SEM圖(50000倍) 89 圖4 - 21 (a)不同層數石墨烯在SiO2/Si基板上之OM圖,A點(單層,1 L)、B點(雙層,2 L)及C點(三層,3 L);(b)對應之拉曼訊號圖(514 nm) 90 圖4 - 22 (a)石墨烯在SiO2/Si基板上之OM圖(銅箔未作電解拋光處理);(b)石墨烯在SiO2/Si基板上之OM圖(銅箔有作電解拋光處理);(c)石墨烯在SiO2/Si基板上之拉曼訊號圖(514 nm),上方曲線對應到圖(a),下方曲線對應到圖(b);(d)石墨烯在PET基板上之OM圖(銅箔未作電解拋光處理);(e)石墨烯在PET基板上之OM圖(銅箔有作電解拋光處理) 91 圖4 - 23 石墨烯轉印至PET基板之透明度分析 92 圖4 - 24 (a)可撓性透明石墨烯場效電晶體試片全貌照片影像圖(尺寸2 cm x 2 cm,含有14個單位元件);(b)為圖(a)一單位元件(長方框)之放大OM圖;(c)為圖(b)方框之放大OM圖 93 圖4 - 25 閘極電流-閘極電壓(IG-VG )曲線圖 94 圖4 - 26 不同閘極電壓(VG)下的汲極電流-汲極電壓(ID-VD )曲線圖 94 圖4 - 27汲極電流-閘極電壓(ID-VG )曲線圖 95 圖4 - 28 不同參數(各3~5組)的電晶體之電子遷移率統計圖 95 圖4 - 29 撓曲測試用夾具及簡易撓曲半徑公式 96 圖4 - 30 載子遷移率變化率(μ/μo)-撓曲半徑關係圖 96

    參考文獻
    [1] J. Bardeen and W. H. Brattain, “The transistor, a semiconductor triode”, Physical Review, Vol. 74, pp. 230-231, 1948.
    [2] A. K. Geim and K. S. Novoselov, “The rise of graphene”, Nature Materials, Vol. 6, pp. 183-191, 2007.
    [3] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang and S. V. Dubonos, “Electric Field Effect in Atomically Thin Carbon Films”, Science, Vol. 306, pp. 666–669, 2004.
    [4] C. Lee, X. D. Wei, J. W. Kysar and J. Hone, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene”, Science, Vol. 321, pp. 385-388, 2008.
    [5] F. Bonaccorso, Z. Sun, T. Hasan and A. C. Ferrari, “Graphene
    photonics and optoelectronics”, Nature Photonics, Vol. 4, pp. 611-622, 2010.
    [6] R. Giorgi, N. Lisi, T. Dikonimos, M. Falconieri, S. Gagliardi, E. Salernitano, P. Morales and L. Pilloni, “Graphene: large area synthesis by Chemical Vapor Depostion”, Studi & ricerche, pp. 68-74, 2011.
    [7] M. I. Katsnelson, “Graphene: carbon in two dimensions” Materials Today, Vol. 10, pp. 20-27, 2007.
    [8] A. H. Castro Neto, F. Guinea, N. M. R. PeresK. S. Novoselov and A. K. Geim, “The electronic properties of graphene”, Reviews of Modern Physics, Vol. 81, pp. 109-162, 2009.
    [9] P. R. Wallace, “The Band Theory of Graphite”, Physical. Review, Vol. 71, pp. 622-634, 1947.
    [10] J. H. Chen, C. Jang, S. Xiao, M. Ishigami and M. S. Fuhrer,
    “Intrinsic and extrinsic performance limits of graphene devices on SiO2”, Nature Nanotechnology, Vol. 3, pp. 206-209, 2008.
    [11] F. Schwierz, “Graphene transistors”, Nature Nanotechnology, Vol 5, pp. 487-496, 2010.
    [12] X. Li, X. Wang, L. Zhang, S. Lee and H. Dai, “Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors”, Science, Vol. 319, pp. 1229-1232, 2008.
    [13] M. W. Lin, C. Ling, Y. Zhang, H. J. Yoon, M. M. C. Cheng, L. A Agapito, N. Kioussis, N. Widjaja and Z. Zhou, “Room-temperature high on/off ratio in suspended graphene nanoribbon field-effect transistors”, Nanotechnology, Vol. 22, 265201(7pp), 2011.
    [14] L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S. Novoselov, A. K. Geim, “Chaotic Dirac Billiard in Graphene Quantum Dots”, Science, Vol. 320, pp. 356-358, 2008.
    [15] X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo and H. Dai1, “N-Doping of Graphene Through Electrothermal Reactions with Ammonia”, Science, Vol. 324, pp. 768-771, 2009.
    [16] D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang and G. Yu, “Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties”, Nano Letters, Vol. 9, pp. 1752-1758, 2009.
    [17] J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo and L. M. K. Vandersypen, “Gate-induced insulating state in bilayer graphene devices”, Nature Materials, Vol. 7, pp. 151-157, 2007.
    [18] S. Lee, K. Lee and Z. Zhong, “Wafer Scale Homogeneous Bilayer Graphene Films by Chemical Vapor Deposition”, Nano Letters, Vol. 10, pp. 4702-4707, 2010.
    [19] B. J. Kim, H. Jang, S. K. Lee, B. H. Hong, J.-H. Ahn and J. H. Cho, “High-Performance Flexible Graphene Field Effect Transistors with Ion Gel Gate Dielectrics”, Nano Letters, Vol. 10, pp. 3464-3466, 2010.
    [20] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First and W. A. d. Heer, “Electronic Confinement and Coherence in Patterned Epitaxial Graphene”, Science, Vol. 312, pp. 1191-1196, 2006.
    [21] W. A. d. Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M. L. Sadowski, M. Potemski and G. Martinez, “Epitaxial graphene”, Solid State Communications, Vol. 143, pp. 92-100, 2007.
    [22] W. S. Hummers Jr.and R. E. Offeman, “Preparation of Graphitic Oxide”, Journal of the American Chemical Society, Vol. 80, pp. 1339, 1958.
    [23] B. C. Brodie, “On the Atomic Weight of Graphite”, Philosophical Transactions of the Royal Society of London, Vol. 149, pp. 249-259, 1859.
    [24] L. Staudenmaier, “Preparation of graphitic acid”, Berichte der Deutschen Chemischen Gesellschaft, Vol. 31, pp. 1481-1487, 1898.
    [25] H.-J. Shin, K. K. Kim, A. Benayad, S.-M. Yoon, H. K. Park, I. S. Jung, M. H. Jin, H.-K. Jeong, J. M. Kim, J. Y. Choi and Y. H. Lee, “Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance”, Advanced Functional Materials, Vol. 19, pp. 1987-1992, 2009.
    [26] H. C. Schniepp, J.-L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud'homme, R. Car, D. A. Saville and I. A. Aksay, “Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide”, The Journal of Physical Chemistry B, Vol. 110, pp. 8535-8539, 2006.
    [27] M. J. McAllister, J.-L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prud'homme and I. A. Aksay, “Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite”,
    Chemistry of Materials, Vol. 19, pp. 4396-4404, 2007.
    [28] J. Wintterlin, M.-L. Bocquet, “Graphene on metalsurfaces”, Surface Science, Vol. 603, pp. 1841-1852, 2009.
    [29] E. Loginova, N. C Bartelt, P. J Feibelman and K. F McCarty, “Evidence for graphene growth by C cluster attachment”, New Journal of Physics, Vol. 10, pp. 30-35, 2008.
    [30] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, “Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition”, Nano Letters, Vol. 9, pp. 30-35, 2009.
    [31] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen and S.-S. Pei1, “Graphene segregated on Ni surfaces and transferred to insulators”, Applied Physics Letters, Vol. 93, 113103(3pp), 2008.
    [32] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils”, Science, Vol. 324, pp.1312-1314, 2009.
    [33] W. Liu, H. Li, C. Xu, Y. Khatami, K. Banerjee, “Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition”, Carbon, Vol. 49, pp. 4122-4130, 2011.
    [34] P. Lenz-Solomun, M.-C. Wu and D. W. Goodman, “Methane coupling at low temperatures on Ru(0001) and Ru(11¯20) catalysts”, Catalysis Letters, Vol. 25, pp. 75-86, 1994.
    [35] 劉書宏「銅電鍍與電解拋光於銅鑲嵌金屬連導線應用之研究」,國立交通大學材料科學與工程學研究所博士論文 中華民國九十五年七月
    [36] S. C. Chang, J. M. Shieh, C. C. Huang, B. T. Dai, Y. H. Li and M. S. Feng, “Microleveling mechanisms and applications of electropolishing on planarization of copper metallization”,
    Journal of vacuum science & technology B, Vol. 20, pp. 2149-2153, 2002.
    [37] Z. Luo, Y. Lu, D. W. Singer, M. E. Berck, L. A. Somers, B. R. Goldsmith and A. T. C. Johnson, “Effect of Substrate Roughness and Feedstock Concentration on Growth of Wafer-Scale Graphene at Atmospheric Pressure”, Chemistry of Materials, Vol. 23, pp. 1441-1447, 2011.
    [38] J.C. Meyera, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, D. Obergfell, S. Roth, C. Girita and A. Zettl, “On the roughness of single- and bi-layer graphene membranes”, Solid State Communications, Vol. 143, pp. 101-109, 2007.
    [39] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov and A. K. Geim, “Two-dimensional atomic crystals”, Proceedings of the National Academy of Sciences of the United States of America, Vol. 102, pp. 10451-10453, 2005.
    [40] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene”, Science, Vol. 320, pp. 5881, 2008.
    [41] P. Blake, E. W. Hill, A. H. C. Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth and A. K. Geim, “Making graphene visible”, Applied Physics Letters, Vol. 91, 063124(3pp), 2007.
    [42] A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon”, Physical Review B, Vol. 61, pp. 14095-14107, 2000.
    [43] M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus and R. Saito, “Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy”, Nano Letters, Vol. 10, pp. 751-758, 2010.
    [44] L. M. Malard, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, “Raman spectroscopy in graphene”, Physics Reports, Vol. 473, pp. 51-87, 2009.
    [45] A. C. Ferrari1, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers”, Physical Review Letters, Vol. 97, 187401(4pp), 2006.
    [46] A. C. Ferrari, “Raman spectroscopy of graphene and graphite: Disorder, electron–phononcoupling, doping and nonadiabatic effects”, Solid State Communications, Vol. 143, pp. 47-57, 2007.
    [47] D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold and L. Wirtz, “Raman imaging of graphene”, Solid State Communications, Vol. 143, pp. 44-46, 2007.
    [48] Y. Y. Wang, Z. H. Ni, T. Yu, Z. X. Shen, H. M. Wang, Y. H. Wu,
    W. Chen and A. T. S. Wee, “Raman Studies of Monolayer Graphene: The Substrate Effect”, The Journal of Physical Chemistry C, Vol. 112, pp. 10637-10640, 2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE