簡易檢索 / 詳目顯示

研究生: 許尚宏
Hsu, Shang-Hong
論文名稱: 於Cellular-Based 物聯網中利用多重轉送技術減少緊急任務的傳輸時間
Minimizing Upload Latency for Critical Tasks in Cellular-based IoT Networks using Multiple Relays
指導教授: 陳文村
Chen, Wen-Tsuen
口試委員: 王志宇
Wang, Chih-Yu
許健平
Sheu, Jang-Ping
學位類別: 碩士
Master
系所名稱:
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 38
中文關鍵詞: 物聯網加速傳輸D2D通信技術
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大多數現有或開發中的IoT通信標準是基於以下假設:IoT服務僅需要低數據速率傳輸,因此限制了其通訊的頻段,使用較小,和瑣碎的資源來提服務像是Narrow-band 頻道。此假設明顯無法負荷具有突發流量,關鍵任務和低延遲要求的IoT服務。 在本文中,利用物聯網網絡中的空閒設備,通過多個物聯網設備的轉發傳輸,提高了傳輸數據效率。這種方法虛擬擴展了IoT使用的Narrow-band 頻寬,利用載波聚合,從而實現物聯網網絡中緊急任務的低延遲服務。我們提出任務平衡方法(TBM)和第一鏈路降序(FDO)來決定物聯網裝置其轉送的順序和其各裝置傳送資料的數據量。我們證明了可以在polynomial time中導出最小化上傳延遲的最優轉送配置,且提出了另一種情況,需要選擇轉送裝置的問題,提出了Greedy algorithm,並證明此演算法至少近似於最佳解的1/2之效能。最後,模擬結果表明,與傳統方法相比,所提出的方法可以將傳輸任務的延遲降低76%


    Most existing or developing IoT communication standards are based on the assumption that IoT services only require low data rate transmission and therefore can be supported by limited resources such as narrow-band channels. This assumption rules out those IoT services with burst traffic, critical tasks, and low latency requirements. In this
    aper, we propose to utilize idle devices in IoT networks to boost the transmission data rate for critical tasks through multiple concurrent transmissions. This approach virtually expands the existing narrow-band IoT protocols to support channel aggregation in order to realize low latency services for critical tasks in IoT networks.
    We propose task-balance method (TBM) and first-link descending order (FDO) to determine the relay order and data partition in a given relay set. We theoretically prove that the optimal relay configuration that minimizes the uploading latency can be derived in polynomial time.
    We establish the hardness of the relay selection
    problem and propose a greedy algorithm to approximate the optimal solution within a $1/2$ performance lower bound. The simulation results shows that the proposed approach can reduce the latency of critical tasks up to 76\% comparing with traditional approaches.

    Contents 1 Introduction 1 2 Related Work 5 3 System Model 7 3.1 Semi-sequential Relay Approach . . . . . . . . . . . . . . . . . . . . . 7 3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 4 Optimal Relay Order and Data Partition 11 5 Multiple Relay Selection 22 5.1 Greedy Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6 Simulation Results 29 6.1 Number of Relay Nodes . . . . . . . . . . . . . . . . . . . . . . . . . 30 6.2 Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6.3 Distance between relays and source . . . . . . . . . . . . . . . . . . . 33 6.4 Density of relay candidates . . . . . . . . . . . . . . . . . . . . . . . . 34 6.5 Multiple Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6.6 Relay Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 7 Conclusions 37

    [1] S. Andreev, A. Pyattaev, K. Johnsson, O. Galinina, and Y. Koucheryavy, \Cellu-
    lar trac ooading onto network-assisted device-to-device connections," IEEE
    Communications Magazine, vol. 52, no. 4, pp. 20{31, Apr. 2014.
    [2] D. Feng, L. Lu, Y. Yuan-Wu, G. Y. Li, G. Feng, and S. Li, \Device-to-device
    communications underlaying cellular networks," IEEE Transactions on Com-
    munications, vol. 61, no. 8, pp. 3541{3551, Aug. 2013.
    [3] X. Lin, J. G. Andrews, and A. Ghosh, \Spectrum sharing for device-to-device
    communication in cellular networks," IEEE Transactions on Wireless Commu-
    nications, vol. 13, no. 12, pp. 6727{6740, Dec. 2014.
    [4] T. Bansal, K. Sundaresan, S. Rangarajan, and P. Sinha, \R2d2: Embracing
    device-to-device communication in next generation cellular networks," in IEEE
    INFOCOM 2014 - IEEE Conference on Computer Communications, Apr. 2014,
    pp. 1563{1571.
    [5] Z. Shen, A. Papasakellariou, J. Montojo, D. Gerstenberger, and F. Xu, \Overview
    of 3GPP LTE-Advanced carrier aggregation for 4G wireless communications,"
    IEEE Communications Magazine, vol. 50, no. 2, pp. 122{130, Feb. 2012.
    [6] S. Wang and J. S. Thompson, \Signal processing implementation of virtual
    carrier for supporting M2M systems based on LTE," in Proceedings of IEEE
    VTC-Spring, May 2015, pp. 1{5.
    [7] E. Morgado, I. Mora-Jimenez, J. J. Vinagre, J. Ramos, and A. J. Caamano,
    \End-to-end average BER in multihop wireless networks over fading channels,"
    IEEE Transactions on Wireless Communications, vol. 9, no. 8, pp. 2478{2487,
    Aug. 2010.
    [8] G. Yan, J. Wang, and X. Zhang, \Performance analysis for end-to-end channel
    system with lossy communication of multi-hop wireless networks," in 2011 IEEE
    International Conference on Communications (ICC), Jun. 2011, pp. 1{5.
    [9] K. Dhaka, R. K. Mallik, and R. Schober, \Performance analysis of decode-
    and-forward multi-hop communication: A di erence equation approach," IEEE
    Transactions on Communications, vol. 60, no. 2, pp. 339{345, Feb. 2012.
    [10] C. Qiu, H. Shen, L. Yu, and S. Soltani, \Low-latency multi-
    ow cooperative
    broadcast in fading wireless networks," IEEE Transactions on Computers, vol.
    65, no. 6, pp. 1802{1815, Jun. 2016.
    [11] C. Qiu, L. Yu, H. Shen, and S. Soltani, \Low-latency multi-
    ow broadcasts in
    fading wireless networks," in 2013 Proceedings IEEE INFOCOM, Apr. 2013,
    pp. 455{459.
    [12] D. Korpi, J. Tamminen, M. Turunen, T. Huusari, Y. S. Choi, L. Anttila, S.
    Talwar, and M. Valkama, \Full-duplex mobile device: Pushing the limits," IEEE
    Communications Magazine, vol. 54, no. 9, pp. 80{87, Sep. 2016.
    [13] Y.-W. P. Hong, W.-J. Huang, and C.-C. J. Kuo, Cooperative communications
    and networking: Technologies and system design. Springer Science & Business
    Media, 2010.
    [14] B. Talha and M. Ptzold, \Channel models for mobile-to-mobile cooperative
    communication systems: A state of the art review," IEEE Vehicular Technology
    Magazine, vol. 6, no. 2, pp. 33{43, Jun. 2011.
    [15] Z. Yi and I. m. Kim, \Diversity order analysis of the decode-and-forward co-
    operative networks with relay selection," IEEE Transactions on Wireless Com-
    munications, vol. 7, no. 5, pp. 1792{1799, May 2008.
    [16] S. Narayanan, M. D. Renzo, F. Graziosi, and H. Haas, \Distributed spatial
    modulation: A cooperative diversity protocol for half-duplex relay-aided wireless
    networks," IEEE Transactions on Vehicular Technology, vol. 65, no. 5, pp. 2947{
    2964, May 2016.
    [17] R. Mesleh, S. S. Ikki, E.-H. M. Aggoune, and A. Mansour, \Performance anal-
    ysis of space shift keying (SSK) modulation with multiple cooperative relays,"
    EURASIP Journal on Advances in Signal Processing, vol. 2012, no. 1, p. 201,
    2012.
    [18] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
    Algorithms, 3rd. The MIT Press, 2009, isbn: 0262033844, 9780262033848.
    [19] P. M. Pardalos and G. Schnitger, \Checking local optimality in constrained
    quadratic programming is NP-hard," Operations Research Letters, vol. 7, pp. 33{
    35, Nov. 1978.
    [20] K. G. Murty and S. N. Kabadi, \Some NP-Complete problems in quadratic and
    nonlinear programming," Mathematical programming, vol. 39, no. 1, pp. 117{
    129, Mar. 1987.
    [21] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, \An analysis of approxima-
    tions for maximizing submodular set functions|I," Mathematical Programming,
    vol. 14, no. 1, pp. 265{294, 1978.
    [22] M. L. Fisher, G. L. Nemhauser, and L. A.Wolsey, An analysis of approximations
    for maximizing submodular set functions|II, M. L. Balinski and A. J. Ho man,
    Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1978, pp. 73{87.
    [23] M. Condoluci, L. Militano, A. Orsino, J. Alonso-Zarate, and G. Araniti, \LTE-
    direct vs. WiFi-direct for machine-type communications over LTE-A systems,"
    in Proceedings of IEEE PIMRC, 2015, pp. 2298{2302.
    [24] H. S. Liao, P. Y. Chen, and W. T. Chen, \An ecient downlink radio resource
    allocation with carrier aggregation in LTE-Advanced networks," IEEE Trans-
    actions on Mobile Computing, vol. 13, no. 10, pp. 2229{2239, Oct. 2014.
    [25] Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal
    Terrestrial Radio Access Network (E-UTRAN); Overall Description; Stage 2
    (Release 12). Dec. 2014.

    QR CODE