簡易檢索 / 詳目顯示

研究生: 李亭芳
Lee, Ting-Fang
論文名稱: On Arithmetic Over Function Fields
指導教授: 于靖
Solomon Friedberg
潘戍衍
口試委員: 于靖
Solomon Friedberg
潘戍衍
王姿月
姚為成
李華介
學位類別: 博士
Doctor
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 84
中文關鍵詞: function fieldautomorphic formmultiple Dirichlet seriesBrandt matrix
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • There are two parts in this dissertation.
    The first part (Chapter 1) is trace formula of a Brandt matrix. Given a division quaternion algebra over a global function field which is definite with respect a fixed chosen infinity place. A family of Brandt matrices is then introduced to encode information from the arithmetic of the division quaternion algebra. Adapting Eichler’s method from the rational field case, we build up a fine formula expressing the trace of these Brandt matrices in terms of class numbers of specific orders inside imaginary quadratic extensions of the global function field embeddable into the division quaternion. The proof is base on a detailed study of the so-called optimal embeddings of quadratic orders into the division quaternion.
    The second part (Chapter 2 and 3) is multiple Dirichlet series over a global function field. Fisher and Friedberg [c.f. FF and FF2] constructed and studied a family of multiple (2 and 3 variables) Dirichlet series over general function fields. They proved that these multiple Dirichlet series satisfy finite, non-abelian groups of functional equations and are rational functions with specific denominator. We then are interested in explicitly finding these multiple Dirichlet series over a curve. In the 2-variable case, we work on in particular the elliptic curve C : y^2 = x^3 + 2x over F_5. For the 3-variable case, we compute the curve P^1 over F_q with q odd which the function field is rational function field over F_q.


    Introduction 5 Chapter 1. Trace Formula of a Brandt Matrix 9 1. Definitions 9 2. Optimal embeddings 11 3. Local optimal embeddings 13 4. Brandt Matrices 19 5. Trace Formula 23 6. Definite Shumura curve and Gross points 26 Chapter 2. Double Dirichlet Series Over Function Fields 35 1. Definitions of the double Dirichlet series 35 2. L-functions and the functional equation 40 3. The first functional equation 43 4. The second functional equation 44 5. Rationality and Example 48 Chapter 3. 3-Variables Dirichlet Series Over Function Fields 57 1. Construction of the sums of L-functions by multiple Dirichlet series 57 2. Functional equations 64 3. Rationality of the multiple Dirichlet series 66 4. Examples 71 Index 77 Bibliography 79

    1. G. Chinta and P. Gunnells, Constructing Weyl Group Multiple Dirichlet Series, Journal of The American Mathematical Society, Volume 23, Number 1, January 2010, Pages 189-215

    2. G. Chinta, S. Friedberg, and J. Hoffstein, Double Dirichlet series and theta functions, in: Contributions in Analytic and Algebraic Number Theory (Blomer, Mih?ilescu, eds.), Springer Proceedings in Math., Vol. 9, Springer, 2012, pp.149-170.

    3. M. Eichler, Lectures on Modular Correspondences, Tata Institute of Fundamental Research, Bombay 1957

    4. B. Fisher and S. Friedberg, Double Dirichlet Series Over Function Fields, Compositio Math. 140 (2004) 613-630

    5. B. Fisher and S. Friedberg, Sums of Twisted GL(2) $L$-functions over function fields, Duke Mathematical Journal Vol. 117, No. 3, 2003

    6. H. Friedlander, Ph.D Dissertation, University of Massachusetts, 2013

    7. J. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer GTM 9

    8. C. Moreno, Algebraic Curves Over Finite Fields, Cambridge Tracts in Mathematics, 97, Cambridge University Press, Cambridge, 1991.

    9. J. Nakawaga, Orders of quadratic extensions of number fields, Acta Arithmetica LXVII.3 (1994)

    10. I. Reiner, Maximal Orders, Oxford University Press, USA (March 27, 2003)

    11. M. Rosen, Number Theory in Function Fields, Springer GTM 210

    12. J. Silverman, The Arithmetic of Elliptic curves 2nd Edition, GTM 106, Springer

    13. A. Weil, Basic Number Theory, Springer-Verlag, New York, 1974.

    14. F.-T. Wei, On Arithmetic of Curves over Function Fields, Ph.D dissertation, National TsingHua University, Taiwan R.O.C

    15. F.-T. Wei and J. Yu, Theta series and function field analogue of Gross formula, Documenta Mathematica 16 (2011) 723-765.

    16. M.-F. Vigneras, Arithmetique des algebres de quaternions, Lecture Notes in Math., vol. 800, Springer-Verlag, 1980.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE