簡易檢索 / 詳目顯示

研究生: 楊杰舜
論文名稱: 上閘極單壁奈米碳管場效電晶體之研究
指導教授: 戴念華
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 110
中文關鍵詞: 單壁奈米碳管場效電晶體跨接
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 通常單壁奈米碳管成長方向為垂直金屬催化劑表面,因此吾人在催化劑表面上再濺鍍一層鋁層,而此一鋁膜也有效地抑制單壁奈米碳管的垂直成長。另一方面,控制區塊間距和區塊的形狀兩種關鍵參數,能成長出單根跨接碳管的單元。
    對已經完成跨接的單元進行電流-電壓曲線量測,可以確認跨接碳管的電學性質。有些單元表現線性的電流-電壓曲線,為金屬性的跨接單壁奈米碳管;而其他單元則是顯示非線性的曲線,在偏壓為零附近有一無電流區域。藉由結合原處成長單壁奈米碳管方式和黃光微影技術,吾人製作出可單一操作的上閘極單壁奈米碳管場效電晶體,同時也發現在不同能隙大小的單壁奈米碳管通道之元件,可以表現出廣義p型及雙極性場效電晶體兩種不一樣的性質。總而言之,成功操作上閘極結構為核心的元件,使得單壁奈米碳管可以更接近積體電路的運用。


    Generally single wall carbon nanotubes (SWNTs) grow in the vertical direction on the catalytic metal plane. Therefore we deposited an Al layer of 10 nm on the catalytic layer by sputtering. The Al layer plays the role of a barrier to prevent vertical growth of the SWNTs effectively. In addition, the size of the gap between the pads and the sharp of the pads are the key parameters for determining the chemical vapor deposition (CVD) growth duration for successfully bridging the pads by individual SWNT.
    To determine the electric properties of the SWNTs contacts, detailed current-voltage (I-V) measurements were performed on sample with the different SWNT connections. Some I-V curves are linear, suggesting metallic behavior; others exhibit nonlinear and a low conductance region develops around V=0. By combining the advantages of in-situ carbon nanotube growth technology and the lithography technology, we have realized the top-gate single wall nanotubes field effect transistors (SWNT-FETs) with individual device operation. We have succeeded in observing ambipolar and generalized p-type transistor operation in variable band gap semiconducting SWNT channels. In summary, the results indicates that the top-gate structure can be operated and demonstrate the potential of SWNT for the future complementary electronic.

    第一章 緒論............................................... 1 1-1 奈米碳管的結構........................................ 1 1-2 奈米碳管的電學性質.................................... 2 1-3 奈米碳管的應用........................................ 5 1-4 研究動機.............................................. 5 第二章 文獻回顧........................................... 9 2-1 奈米碳管電子元件...................................... 9 2-2 跨接奈米碳管的製作................................... 10 2-3 奈米碳管和場效電晶體的結合........................... 11 2-4 閘極結構............................................. 12 2-5帶對帶穿遂行為........................................ 13 2-6 n型奈米碳管場效電晶體................................ 14 2-7金屬電極和奈米碳管.................................... 15 第三章 研究方法與實驗步驟................................ 31 3-1 實驗步驟流程......................................... 31 3-2 黃光製程............................................. 31 3-3 薄膜製程............................................. 32 3-4 化學氣相沉積製程..................................... 32 3-5 實驗結果分析......................................... 33 第四章 結果與討論........................................ 40 4-1 阻絕層對碳管側向跨接的影響........................... 40 4-1-1 選用氧化鎂作為阻絕層............................... 40 4-1-2 選用金屬鉬作為阻絕層............................... 42 4-1-3 選用金屬鋁作為阻絕層............................... 44 4-2 不同形狀區塊對碳管側向跨接的影響..................... 47 4-2-1 選用雙個方形區塊的碳管側向跨接..................... 47 4-2-2 選用雙個尖點對尖點區塊的碳管側向跨接............... 49 4-2-3 碳管側向跨接後之金屬電極覆蓋....................... 51 4-3 二極電性量測......................................... 53 4-3-1 九宮格單位之二極電性量測........................... 53 4-3-2 尖點對尖點單位之二極電性量測....................... 55 4-3-3 覆蓋金屬電極單位之二極電性量測..................... 57 4-4 單壁奈米碳管場效電晶體(SWNT-FET)................... 59 4-4-1上閘極SWNT-FET之製作................................ 59 4-4-2 寬能隙SWNT-FET..................................... 61 4-4-3 窄能隙SWNT-FET..................................... 66 4-4-4 金半混合型SWNT-FET................................. 69 第五章 結論............................................. 103 第六章 參考文獻......................................... 105

    1.S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354, 56, (1991).
    2.Rice University: Rick Smalley’s Group Home Page Image Gallery.
    3.J. H. Schon, Ch. Kloc, and B. Batlogg, High Temperature Super conductivity in Lattice-Expanded C60, Science 293, 2432 (2001).
    4.M. S. Dresseelhaus, G. Dresseelhaus, and R. Saito, “Physics of carbon nanotubes”, Carbon, 33, 883 (1995).
    5.Carbon Nanotubes and Related Structures-new materials for the twenty-first century, Peter J. F. Harris, Department of Chemisty, University of Reading.
    6.D. L. Carroll, Ph. Redlich, X. Blase, J.-C. Charlier, S. Curran, P. M. Ajayan, S. Roth, and M. Rühle, “Effects of Nanodomain Formation on the Electronic Structure of Doped Carbon Nanotubes”, Physical Review Letters 81, 2332 (1998).
    7.A. M. Rao, P. C. Eklund, Shunji Bandow, A. Thess, and R. E. Smalley, “Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering”, Nature 388, 257 (1997).
    8.R. S. Lee, H. J. Kim, J. E. Fischer, A. Thess, and R. E. Smalley, “Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br”, Nature 388, 255 (1997).
    9.Traian Dumitrica, Ming Hua, and Boris I. Yakobson, “Symmetry-, time-, and temperature-dependent strength of carbon nanotubes”, Science 281, 940 (1998).
    10.Leonor Chico,* Lorin X. Benedict, Steven G. Louie, and Marvin L. Cohen, “Quantum conductance of carbon nanotubes with defects”, Physical Review B, 54, 2600 (1996).
    11.Stefan Frank, Philippe Poncharal, Z. L. Wang, and Walt A. de Heer, “Carbon Nanotube Quantum Resistors”, Science, 280, 1744 (1998)
    12.Carter T. White and Tchavdar N. Todorov, “Nanotubes go ballistic”, Nature, 411, 649 (2001).
    13.Adrian Bachtold, Christoph Strunk, Jean-Paul Salvetat, Jean-Marc Bonard, Laszlo ForroÂ, Thomas Nussbaumer, and Christian SchoÈ nenberger, “Aharonov-Bohm oscillations in carbon nanotubes”, Nature, 397, 673 (1999).
    14.陳啟東「單電子電晶體簡介」,物理雙月刊,二十六卷三期,483 (2004).
    15.Philip G. Collins, Keith Bradley, Masa Ishigami, and A. Zettl, “Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes”, Science, 287, 1801 (2000).
    16.Jing Kong, Nathan R. Franklin, Chongwu Zhou, Michael G. Chapline, Shu Peng, Kyeongjae Cho, and Hongjie Dai1, “Nanotube Molecular Wires as Chemical Sensors”, Science, 287, 622 (2000).
    17.A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert, and R. E. Smalley, “Unraveling nanotubes: field emission from an atomic wire”, Science, 269, 1550 (1995).
    18.W. A. de Heer, A. Chatelain, and D. Ugarte, “A carbon nanotube field-emission electron source”, Science, 270, 1179 (1995).
    19.G. Che, B. B. Lakshmi, E. R. Fisher and C. R. Martin, “Carbon nanotubule membranes for electrochemical energy storage and production”, Nature, 393, 346 (1998).
    20.B. Gao, A. Kleinhammes, X.P. Tang, C. Bower, L. Fleming, Y. Wu, O. Zhou, “Electrochemical intercalation of single-walled carbon nanotubes with lithium”, Chemical Physics Letters, 307, 153 (1999).
    21.H. Shimoda, B. Gao, X. P. Tang, A. Kleinhammes, L. Fleming, Y. Wu and O. Zhou, “Lithium intercalation into etched single-wall carbon nanotubes”, Physica B, 323, 133 (2002).
    22.A. C.Dillon, K.M. Jones, T. A.Bekkedahl, C. H.Kiang, D. S. Bethune, and M. J. Heben, ‘Storage of hydrogen in single-walled carbon nanotubes”, Nature, 386, 377(1997).
    23.S. Mi Lee and Y. Hee Lee, “Hydrogen storage in single walled carbon nanotubes”, Applied Physics Letters, 76 (20), 2877 (2000).
    24.Y. Chen, D. T. Shaw, X. D. Bai, E. G. Wang, C. Lund, W. M. Lu , “Hydrogen storage in aligned carbon nanotubes”, Applied Physics Letters, 78, 2128 (2001).
    25.W. Qikun, Z. Changchun, L. Weihua, “Hydrogen storage by carbon nanotube and their films under ambient pressure”, International Journal of Hydrogen Energy, 27, 497 (2002).
    26.S. J. Tans, Alwin R. M. Verschueren and C. Dekker, “Room-temperature transistor based on a single carbon nanotube”, Nature, 393, 49 (1998).
    27.R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and Ph. Avouris, “Single and multi-wall carbon nanotube field-effect transistors”, Applied Physics Letters, 73, 2447 (1998).
    28.P. Avouris, T. Hertel, R. Martel, T. Schmidt, H. R. Shea, R. E. Walkup, “Carbon nanotubes: nanomechanics, manipulation, and electronic devices”, Applied Surface Science, 141, 201 (1999).
    29.M. Ahlskog, R. Tarkiainen, L. Roschier, and P. Hakonen, “Single-electron transistor made of two crossing multiwalled carbon nanotubes and its noise properties”, Applied Physics Letters, 77, 4037 (2000).
    30.B. I. Yakobson and R. E. Smalley, “Fullerene nanotubes and beyond”, American Scientist, 85, 324 (1997).
    31.P. Calvert, “Strength in disunity”, Nature, 357, 356 (1992).
    32.L. Jin, C. Bower, and O.Zhou, “Alignment of carbon nanotubes in a polymer matrix by mechanical stretching”, Applied Physics Letters, 73, 1197 (1998).
    33.David A. Britz, Andrei N. Khlobystov, Kyriakos Porfyrakis, Arzhang Ardavan, G. Andrew D. Briggs, “Chemical reactions inside single-walled carbon nano test-tubes”, Chemical Communications, 1, 37 (2005).
    34.J. Wei, H. Zhu, D. Wu, B. Wei, “Carbon nanotube filaments in household light bulbs”, Applied Physics Letters, 84, 4869 (2003).
    35.T. Du1rkop, S. A. Getty, Enrique Cobas, and M. S. Fuhrer, “Extraordinary Mobility in Semiconducting Carbon Nanotubes”, Nano Letters, 4, 35 (2004).
    36.Yung-Fu Chen and M. S. Fuhrer, “Electric-Field-Dependent Charge-Carrier Velocity in Semiconducting Carbon Nanotubes”, Physical Review Letters, 95, 236803 (2005).
    37.J. Appenzeller, R. Martel, and P. Avouris, “Optimized contact configuration for the study of transport phenomena in ropes of single-wall carbon nanotubes”, Applied Physics Letters, 78, 3313 (2001).
    38.Philip G. Collins, A. Zettl, Hiroshi Bando, Andreas Thess, and R. E. Smalley, “Nanotube Nanodevice”, Science, 278, 100 (1997).
    39.Young-Kyun Kwon, David Tománek, and Sumio Iijima, “Bucky Shuttle Memory Device: Synthetic Approach and Molecular Dynamics Simulations”, Physical Review Letters, 82, 1470 (1999).
    40.Henk W. Ch. Postma, Tijs Teepen, Zhen Yao, Milena Grifoni, and Cees Dekker, “Carbon Nanotube Single-Electron Transistors at Room Temperature”, Science, 293, 76 (2001).
    41.Adrian Bachtold, Peter Hadley, Takeshi Nakanishi, and Cees Dekker, “Logic Circuits with Carbon Nanotube Transistors”, Science, 294, 1317 (2001).
    42.Philip G. Collins, Michael S. Arnold, and Phaedon Avouris, “Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown”, Science, 292, 706 (2001).
    43.Daisuke Takagi, Yoshikazu Hommaa, Yoshihiro Kobayashi, “Selective growth of individual single-walled carbon nanotubes suspended between pillar structures”, Physica E 24 (2004) 1-5
    44.Young-Soo Han, Jin-Koog Shin, and Sung-Tae Kim, “Synthesis of carbon nanotube bridges on patterned silicon wafers by selective lateral growth”, Journal of Applied Physics, 90, 11 (2001).
    45.Y. Y. Wei, and Gyula Eres, “Directed assembly of carbon nanotube electronic circuits”, Applied Physics Letters, 76, 3759 (2000).
    46.M. A. El. Khakani1 and J. H. Yi, “The nanostructure and electrical properties of SWNT bundle networks grown by an ‘all-laser’ growth process for nanoelectronic device applications”, Nanotechnology, 15, 534 (2004).
    47.Alexander B. Artyukhin, Michael Stadermann, Raymond W. Friddle, Pieter Stroeve, Olgica Bakajin, and Aleksandr Noy, “Controlled Electrostatic Gating of Carbon Nanotube FET Devices”, Nano Letters, 6, 2080 (2006).
    48.Takafumi Kamimura1, and Kazuhiko Matsumoto1, “Coherent Transport of Hole and Coulomb Blockade Phenomenon in Long p-type Semiconductor Carbon Nanotube”, Proceedings of SPIE, 6127, 612714 (2006).
    49.L. Marty, A. Iaia, M. Faucher, V. Bouchiat, C. Naud, M. Chaumont, T. Fournier, and A.M. Bonnot , “Self-assembled single wall carbon nanotube field effect transistors and AFM tips prepared by hot filament assisted CVD”, Thin Solid Films, 501, 299 (2006).
    50.Masashi Shiraishi, Taishi Takenobu, Toshinori Iwai, Yoshihiro Iwasa, Hiromichi Kataura, and Masafumi Ata, “Single-walled carbon nanotube aggregates for solution-processed field effect transistors”, Chemical Physics Letters, 394, 110 (2004).
    51.Ralf Thomas Weitz, Ute Zschieschang, Franz Effenberger, Hagen Klauk, Marko Burghard, and Klaus Kern, “High-Performance Carbon Nanotube Field Effect Transistors with a Thin Gate Dielectric Based on a Self-Assembled Monolayer”, Nano Letters, 7, 22 (2007).
    52.Yunsung Woo, Maik Liebau, Georg S. Duesberg, and Siegmar Roth, “Contact Resistance between Individual Single Walled Carbon Nanotubes and Metal Electrodes”, Electronic Properties of Synthetic Nanostructures, 723, 516 (2004).
    53.Ali Javey, Jing Guo, Qian Wang, Mark Lundstrom, and Hongjie Dai, “Ballistic carbon nanotube field-effect transistors”, Nature, 424, 654 (2003).
    54.Fei Liu, Mingqiang Bao, and Kang L. Wang, “Determination of the Small Band Gap of Carbon Nanotubes Using the Ambipolar Random Telegraph Signal”, Nano Letters, 5, 1333 (2005).
    55.Min Zhang, Philip C. H. Chan, and Yang Chai, “Local silicon-gate carbon nanotube field effect transistors using silicon-on-insulator technology”, Applied Physics Letters, 89, 023116 (2006).
    56.Ali Javey, Jing Guo, Damon B. Farmer, Qian Wang, Dunwei Wang, Roy G. Gordon, Mark Lundstrom, and Hongjie Dai, ” Carbon Nanotube Field-Effect Transistors with Integrated Ohmic Contacts and High-K Gate Dielectrics”, Nano Letters, 4, 447 (2004).
    57.J. Appenzeller, Y.-M. Lin, J. Knoch, and Ph. Avouris, “Band-to-Band Tunneling in Carbon Nanotube Field-Effect Transistors”, Physical Review Letters, 93, 196805 (2004).
    58.Siyuranga O. Koswatta, Mark S. Lundstrom, and Dmitri E. Nikonov, “Band-to-Band Tunneling in a Carbon Nanotube Metal-Oxide- Semiconductor Field-Effect Transistor Is Dominated by Phonon- Assisted Tunneling”, Nano letters, 7,1160 (2007).
    59.Wolfgang Hoenlein, Franz Kreupl, Georg S. Duesberg, Andrew P. Graham, Maik Liebau, Robert Seidel, and Eugen Unger, “Carbon Nanotubes: Can they become a microelectronics technology?”, Electronic Properties of Synthetic Nanostructures, 723, 565 (2004).
    60.Yung-Fu Chen and Michael S. Fuhrer, “Tuning from Thermionic Emission to Ohmic Tunnel Contacts via Doping in Schottky-Barrier Nanotube Transistors”, Nano Letters, 6, 2158 (2006).
    61.Seung-Hoon Jhi, Steven G. Louie, and Marvin L. Cohen, “Electronic Properties of Oxidized Carbon Nanotubes”, Physical Review Letters, 85, 1710 (2000).
    62.V. Derycke, R. Martel, J. Appenzeller, and Ph. Avouris, “Carbon Nanotube Inter- and Intramolecular Logic Gates”, Nano letters, 1, 453 (2001).
    63.Yosuke Nosho, Yutaka Ohno, Shigeru Kishimoto, and Takashi Mizutani, “n-type carbon nanotube field-effect transistors fabricated by using Ca contact electrodes”, Applied Physics Letters, 86, 073105 (2005).
    64.Yu-Chih Tseng, Kinyip Phoa, David Carlton, and Jeffrey Bokor, “Effect of Diameter Variation in a Large Set of Carbon Nanotube Transistors”, Nano Letters, 6, 1364 (2006).
    65.葉澤宏「以化學氣相沉積法成長選區跨接碳管之研究」,國立清華大學材料科學工程研究所碩士論文 中華民國九十五年七月
    66.Do-Hyun Kim, Jun Huang, Hoon-Kyu Shin, Somenath Roy, and Wonbong Choi, “Transport Phenomena and Conduction Mechanism of Single-Walled Carbon Nanotubes (SWNTs) at Y- and Crossed-Junctions”, Nano Letters, 6, 2821 (2006).
    67.Mintmire, J. W.; and White, C. T., “Electronic and structural properties of carbon nanotubes”, Carbon, 33, 893 (1995).
    68.H.M. Cheng, F. Li, X. Sun, S.D.M. Brown, M.A. Pimenta, A. Marucci, G. Dresselhaus, M.S. Dresselhaus, Chemical Physics Letters. 289, 602 (1998).
    69.Chongwu Zhou, Jing Kong, and Hongjie Dai, “Electrical measurements of individual semiconducting single-walled carbon nanotubes of various diameters”, Applied Physics Letters, 76, 1597 (2000).
    70.Danvers E. Johnston, Mohammad F. Islam, Arjun G. Yodh, and Alan T. Johnson, “Electronic devices based on purified carbon nanotubes grown by high-pressure decomposition of carbon monoxide”, Nature Materials, 4, 589 (2005).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE