簡易檢索 / 詳目顯示

研究生: 吳泊賢
Wu, Bao-Hsien
論文名稱: 金-二氧化鈦複合奈米陣列結構之製備、表面電漿子特性及電漿子強化光催化產氫應用研究
Fabrication, Plasmonic Properties and Plasmon-Enhanced Photocatalytic Hydrogen Production of Au/TiO2 Hybrid Nanocrystal Arrays
指導教授: 陳力俊
Chen, Lih-Juann
口試委員: 鄭晃忠
Cheng, Huang-Chung
吳文偉
Wu, Wen-Wei
呂明諺
Lu, Ming-Yen
陳智彥
Chen, Chih-Yen
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 83
中文關鍵詞: 電漿子性質光催化產氫複合結構
外文關鍵詞: Plasmonic Properties, Photocatalytic, Hydrogen Production, Hybrid Structures
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由電漿子金屬和不同的介電層半導體材料所組成的複合奈米結構因其特別而引人注目的表面電漿性質越來越受到重視。近期研究也指出藉由引入電漿子金屬產生電漿子強化光吸收效應和電漿子敏化現象,半導體材料的光催化效率也能因而提升。
    在本博士論文中,我們合成了六角緊密堆積的金-二氧化鈦複合奈米陣列結構並進行光催化分解產氫的研究。透過結合膠體微影術、高溫熱退火處理、原子層沉積等技術,開發出了一套製程能成功的合成出大面積的六角緊密堆積的金-二氧化鈦複合奈米陣列結構,同時具有高度的陣列性跟均勻性。為了進一步探討其結構的表面電漿共振特性,量測了金-二氧化鈦複合奈米陣列結構的散射光譜,並透過理論模擬比照。在高反射率的二氧化鈦包覆的情況下,其表面電漿子共振波長呈現紅移,並且有分峰的情況出現,和理論模擬結果相符。
    而在探討光催化分解產氫的實驗上,利用金-二氧化鈦複合奈米陣列結構做為催化物,無論是在可見光波段或是紫外光上,都有顯著的效率提升。透過時域有限差分法模擬可進一步看出在陣列結構上出現了電漿子引發局部強場的耦合,這說明了光催化效率提升的原因。同時不規則排列的金-二氧化鈦複合結構呈現了較差的效果,也說明了陣列結構的重要性。透過本篇論文的研究,對於未來設計電漿子金屬-半導體複合結構應用時,能有更深一層了解並有望達到更大的增益作用。


    In recent years, hybrid nanostructures consisted of plasmonic metals and different dielectric materials have attracted much attention for their intriguing plasmonic properties. Recent studies have also shown that by introducing plasmonic metals, the photocatalytic efficiency of semiconductor can improve via plasmon-enhanced light absorption and plasmonic sensitization.
    In this thesis, excellent photocatalytic properties for hydrogen production have been demonstrated by utilizing the hexagonal close-packed Au/TiO2 hybrid nanocrystal arrays. By combining colloidal lithography, dewetting process driven by surface energy and atomic layer deposition, a large area of hexagonal close-packed Au/TiO2 hybrid nanocrystal arrays with 100-110 nm single crystalline Au core and 10-40 nm TiO2 shell are prepared with highly ordered periodicity and uniformity.
    To explore the localized surface plasmon resonance (LSPR) properties of the Au/TiO2 hybrid nanocrystal arrays, the scattering spectra were measured and compared with the simulation by Mie theory. The LSPR wavelength was found to be red-shifting and splitting into two LSPR peaks, correlating exactly to the simulated results based on Mie theory.
    Under both ultra-violet and visible light, significant increase in the hydrogen production from 20% methanol solution water splitting was achieved with the hybrid Au/TiO2 nanocrystal arrays in comparison with bare TiO2 thin film as well as the randomly distributed Au/TiO2 nanocrystals. From the finite difference time domain simulation, the significant increase in hydrogen production can be correlated to strong and optimum coupling of the enhanced electric field from LSPR in Au/TiO2 nanocrystal arrays. In addition to allowing more accurate measurement of plasmonic enhancement, the ordered nanostructures have been shown to be especially amenable to the systematic analysis of lateral coupling of plasmonically enhanced electric field. As a result, optimal structures with appropriate spacing of core-shell metal-dielectric nanocrystals, metal core size and dielectric shell thickness for maximum enhancement can be designed.

    Abstract I 摘要 III Acknowledgments IV Contents VI Chapter 1 Introduction 1 1.1 Plasmonic Properties of Nanomaterials 2 1.1.1 Overview 2 1.1.2 Localized Surface Plasmon Resonance and Applications 3 1.1.3 Surface Plasmon Polariton (SPP) and Applications 6 1.2 Plasmonic Materials 8 1.3 Plasmonic Metals/Dielectric Materials Hybrid Nanostructures 9 1.4 Surface Plasmon Resonance-Enhanced Photocatalysis 11 1.4.1 Photocatalytic Reactions 11 1.4.2 Photocatalytic Water Splitting 13 1.5 Mechanisms of Photocatalytic Plasmon Enhancement 15 1.6 Motivations and Outline 17 Chapter 2 Experimental Section 19 2.1 Experimental Flowchart 19 2.2 Experimental Procedures 19 2.2.1 Fabrication of Hexagonal Au Nanocrystal Arrays 20 2.2.2 Fabrication of Hexagonal Au/TiO2 Hybrid Nanocrystal Arrays 20 2.2.3 Measurement of LSPR Properties of Au/TiO2 Hybrid Nanocrystal Arrays 21 2.2.4 Measurement of Plasmon-Enhanced Photocatalytic Properties of Au/TiO2 Hybrid Nanocrystal Arrays 21 2.3 Experimental 22 2.3.1 Electron Beam Gun Evaporation (E-Gun Evaporation) 22 2.3.2 Furnace Setup 22 2.3.3 Atomic Layer Deposition (ALD) 23 2.3.4 Scanning Electron Microscopy (SEM) 24 2.3.5 Focused Ion Beam (FIB) 25 2.3.6 Transmission Electron Microscopy (TEM) 26 2.3.7 Light-Scattering Spectroscopy 27 2.3.8 Rapid Thermal Annealing (RTA) 27 2.3.9 Gas Chromatography 28 Chapter 3 Fabrication and LSPR Properties of Au/TiO2 Hybrid Nanocrystal Arrays 29 3.1 Introduction and Motivation 29 3.2 Fabrication of Hexagonal Au/TiO2 Hybrid Nanocrystal Arrays 31 3.3 Measurement and Simulation of Scattering Spectrum of Au/TiO2 Hybrid Nanocrystal Arrays 37 3.4 Conclusions 41 Chapter 4 Plasmon-Enhanced Photocatalytic Hydrogen Production on Au/TiO2 Hybrid Nanocrystal Arrays 42 4.1 Introduction and Motivation 42 4.2 Plasmon Enhanced Photocatalytic Water Splitting by Au/TiO2 Nanocrystal Arrays and FDTD Simulation 45 4.3 Investigation with the Periodicity of the Au/TiO2 Nanocrystal Arrays and Plasmon Enhanced Photocatalysis 53 4.4 Investigation with Size of the Plasmonic Metal in Au/TiO2 Nanocrystal Arrays and Plasmon Enhancement in Near-Field 55 4.5 Conclusions 59 Chapter 5 Summary and Conclusions 60 Chapter 6 Future Prospects 62 6.1 Fabrication of Au-SiO2-TiO2 Hybrid Nanocrystal Arrays 62 6.2 Plasmon Enhancement of Photocatalytic Hydrogen Production on Plasmonic metals/TiO2 Nanostructures: Au/Ag/Al 66 References 68

    1. Polman, A.; Atwater, H. A. Plasmonics: optics at the nanoscale. Materials Today 2005, 8, 56-56.
    2. Raether, H. Surface-Plasmons on smooth and rough surfaces and on gratings. Springer Tracts in Modern Physics 1988, 111, 1-133.
    3. Petryayeva, E.; Krull, U. J. Localized surface plasmon resonance: Nanostructures, bioassays and biosensing-A review. Analytica Chimica Acta 2011, 706, 8-24.
    4. Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W. Y.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y. N. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chemical Reviews 2011, 111, 3669-3712.
    5. Liu, X.; Swihart, M. T. Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials. Chemical Society Reviews 2014, 43, 3908-3920.
    6. Zhou, S.; Pi, X. D.; Ni, Z. Y.; Ding, Y.; Jiang, Y. Y.; Jin, C. H.; Delerue, C.; Yang, D. R.; Nozaki, T. Comparative study on the localized surface plasmon resonance of boron- and phosphorus-doped silicon nanocrystals. ACS Nano 2015, 9, 378-386.
    7. Murray, W. A.; Barnes, W. L. Plasmonic materials. Advanced Materials 2007, 19, 3771-3782.
    8. Fleischmann, M.; Hendra, P. J.; Mcquillan, A. J. Raman-spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters 1974, 26, 163-166.
    9. Albrecht, M. G.; Creighton, J. A. Anomalously intense raman-spectra of pyridine at a silver electrode. Journal of the American Chemical Society 1977, 99, 5215-5217.
    10. Willets, K. A.; Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annual Review of Physical Chemistry 2007, 58, 267-297.
    11. Gwo, S.; Shih, C. K. Semiconductor plasmonic nanolasers: current status and perspectives. Reports on Progress in Physics 2016, 79.
    12. Noginov, M. A.; Zhu, G.; Belgrave, A. M.; Bakker, R.; Shalaev, V. M.; Narimanov, E. E.; Stout, S.; Herz, E.; Suteewong, T.; Wiesner, U. Demonstration of a spaser-based nanolaser. Nature 2009, 460, 1110-1168.
    13. Zeng, S. W.; Baillargeat, D.; Ho, H. P.; Yong, K. T. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chemical Society Reviews 2014, 43, 3426-3452.
    14. Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 2003, 424, 824-830.
    15. Oulton, R. F.; Sorger, V. J.; Zentgraf, T.; Ma, R. M.; Gladden, C.; Dai, L.; Bartal, G.; Zhang, X. Plasmon lasers at deep subwavelength scale. Nature 2009, 461, 629-632.
    16. Lu, Y. J.; Kim, J.; Chen, H. Y.; Wu, C. H.; Dabidian, N.; Sanders, C. E.; Wang, C. Y.; Lu, M. Y.; Li, B. H.; Qiu, X. G.; Chang, W. H.; Chen, L. J.; Shvets, G.; Shih, C. K.; Gwo, S. Plasmonic nanolaser using epitaxially grown silver film. Science 2012, 337, 450-453.
    17. West, P. R.; Ishii, S.; Naik, G. V.; Emani, N. K.; Shalaev, V. M.; Boltasseva, A. Searching for better plasmonic materials. Laser & Photonics Reviews 2010, 4, 795-808.
    18. Naik, G. V.; Shalaev, V. M.; Boltasseva, A. Alternative plasmonic materials: beyond gold and silver. Advanced Materials 2013, 25, 3264-3294.
    19. Xia, Y. N.; Halas, N. J. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bulletin 2005, 30, 338-344.
    20. Lee, K. S.; El-Sayed, M. A. Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition. Journal of Physical Chemistry B 2006, 110, 19220-19225.
    21. Chen, Y.; Xin, X.; Zhang, N.; Xu, Y. J. Aluminum-based plasmonic photocatalysis. Particle & Particle Systems Characterization 2017, 34.
    22. Grzelczak, M.; Perez-Juste, J.; Mulvaney, P.; Liz-Marzan, L. M. Shape control in gold nanoparticle synthesis. Chemical Society Reviews 2008, 37, 1783-1791.
    23. Chen, H. J.; Shao, L.; Li, Q.; Wang, J. F. Gold nanorods and their plasmonic properties. Chemical Society Reviews 2013, 42, 2679-2724.
    24. Costi, R.; Saunders, A. E.; Banin, U. Colloidal Hybrid Nanostructures: A new type of functional materials. Angewandte Chemie-International Edition 2010, 49, 4878-4897.
    25. Cortie, M. B.; McDonagh, A. M. Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chemical Reviews 2011, 111, 3713-3735.
    26. Lattuada, M.; Hatton, T. A. Synthesis, properties and applications of Janus nanoparticles. Nano Today 2011, 6, 286-308.
    27. Jiang, R. B.; Chen, H. J.; Shao, L.; Li, Q.; Wang, J. F. Unraveling the evolution and nature of the plasmons in (Au Core)-(Ag shell) nanorods. Advanced Materials 2012, 24, 200-207.
    28. Xiang, Q.; Yu, J.; Jaroniec, M. Nitrogen and sulfur co-doped TiO2 nanosheets with exposed {001} facets: synthesis, characterization and visible-light photocatalytic activity. Phys Chem Chem Phys 2011, 13, 4853-4861.
    29. Park, J. H.; Kim, S.; Bard, A. J. Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Letters 2006, 6, 24-28.
    30. Rajeshwar, K.; de Tacconi, N. R. Solution combustion synthesis of oxide semiconductors for solar energy conversion and environmental remediation. Chemical Society Reviews 2009, 38, 1984-1998.
    31. Woan, K.; Pyrgiotakis, G.; Sigmund, W. Photocatalytic carbon-nanotube-TiO2 composites. Advanced Materials 2009, 21, 2233-2239.
    32. Liu, W. T.; Wu, B. H.; Lai, Y. T.; Tai, N. H.; Perng, T. P.; Chen, L. J. Enhancement of water splitting by controlling the amount of vacancies with varying vacuum level in the synthesis system of SnO2-x/In2O3-y heterostructure as photocatalyst. Nano Energy 2018, 47, 18-25.
    33. Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Materials 2011, 10, 911-921.
    34. Hou, W.; Cronin, S. B. A Review of surface plasmon resonance-enhanced Photocatalysis. Advanced Functional Materials 2013, 23, 1612-1619.
    35. Hwang, H. Y.; Iwasa, Y.; Kawasaki, M.; Keimer, B.; Nagaosa, N.; Tokura, Y. Emergent phenomena at oxide interfaces. Nature Materials 2012, 11, 103-113.
    36. Wang, H. P.; Sun, K.; Noh, S. Y.; Kargar, A.; Tsai, M. L.; Huang, M. Y.; Wang, D. L.; He, J. H. High-performance a-Si/c-Si heterojunction photoelectrodes for photoelectrochemical oxygen and hydrogen evolution. Nano Letters 2015, 15, 2817-2824.
    37. Wang, H. P.; Lien, D. H.; Tsai, M. L.; Lin, C. A.; Chang, H. C.; Lai, K. Y.; He, J. H. Photon management in nanostructured solar cells. Journal of Materials Chemistry C 2014, 2, 3144-3171.
    38. Chen, H. M.; Chen, C. K.; Chen, C. J.; Cheng, L. C.; Wu, P. C.; Cheng, B. H.; Ho, Y. Z.; Tseng, M. L.; Hsu, Y. Y.; Chan, T. S.; Lee, J. F.; Liu, R. S.; Tsai, D. P. Plasmon inducing effects for enhanced photoelectrochemical water splitting: x-ray absorption approach to electronic structures. ACS Nano 2012, 6, 7362-7372.
    39. Khan, G. G.; Sarkar, D.; Singh, A. K.; Mandal, K. Enhanced band gap emission and ferromagnetism of Au nanoparticle decorated alpha-Fe2O3 nanowires due to surface plasmon and interfacial effects. RSC Advances 2013, 3, 1722-1727.
    40. Seh, Z. W.; Liu, S. H.; Zhang, S. Y.; Bharathi, M. S.; Ramanarayan, H.; Low, M.; Shah, K. W.; Zhang, Y. W.; Han, M. Y. Anisotropic growth of titania onto various gold nanostructures: synthesis, theoretical understanding, and optimization for catalysis. Angewandte Chemie-International Edition 2011, 50, 10140-10143.
    41. Wu, X. F.; Song, H. Y.; Yoon, J. M.; Yu, Y. T.; Chen, Y. F. Synthesis of core-shell Au@TiO2 nanoparticles with rruncated wedge-shaped morphology and their photocatalytic properties. Langmuir 2009, 25, 6438-6447.
    42. Zhang, L.; Blom, D. A.; Wang, H. Au-Cu2O core-shell nanoparticles: A hybrid metal-semiconductor heteronanostructure with geometrically tunable optical properties. Chemistry of Materials 2011, 23, 4587-4598.
    43. Seh, Z. W.; Liu, S.; Low, M.; Zhang, S. Y.; Liu, Z.; Mlayah, A.; Han, M. Y. Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Advanced Materials 2012, 24, 2310-2314.
    44. Jiang, R.; Li, B.; Fang, C.; Wang, J. Metal/Semiconductor hybrid nanostructures for plasmon-enhanced applications. Advanced Materials 2014, 26, 5274-5309.
    45. Zhang, Y.; Ding, H.; Liu, Y.; Pan, S.; Luo, Y.; Li, G. Facile one-step synthesis of plasmonic/magnetic core/shell nanostructures and their multifunctionality. Journal of Materials Chemistry 2012, 22, 10779.
    46. Meir, N.; Plante, I. J. L.; Flomin, K.; Chockler, E.; Moshofsky, B.; Diab, M.; Volokh, M.; Mokari, T. Studying the chemical, optical and catalytic properties of noble metal (Pt, Pd, Ag, Au)-Cu2O core-shell nanostructures grown via a general approach. Journal of Materials Chemistry A 2013, 1, 1763-1769.
    47. Chen, W. T.; Yang, T. T.; Hsu, Y. J. Au-CdS core-shell nanocrystals with controllable shell thickness and photoinduced charge separation property. Chemistry of Materials 2008, 20, 7204-7206.
    48. Fan, J. A.; Bao, K.; Wu, C. H.; Bao, J. M.; Bardhan, R.; Halas, N. J.; Manoharan, V. N.; Shvets, G.; Nordlander, P.; Capasso, F. Fano-like interference in self-assembled plasmonic quadrumer clusters. Nano Letters 2010, 10, 4680-4685.
    49. Chen, H. J.; Shao, L.; Man, Y. C.; Zhao, C. M.; Wang, J. F.; Yang, B. C. Fano resonance in (gold core)-(dielectric shell) nanostructures without symmetry breaking. Small 2012, 8, 1503-1509.
    50. Zhang, Q.; Lima, D. Q.; Lee, I.; Zaera, F.; Chi, M. F.; Yin, Y. D. A Highly active titanium dioxide based sisible-light photocatalyst with nonmetal doping and plasmonic metal decoration. Angewandte Chemie-International Edition 2011, 50, 7088-7092.
    51. Ye, M. M.; Zhou, H. H.; Zhang, T. Q.; Zhang, Y. P.; Shao, Y. Preparation of SiO2@Au@TiO2 core-shell nanostructures and their photocatalytic activities under visible light irradiation. Chemical Engineering Journal 2013, 226, 209-216.
    52. Kim, Y.; Park, K. Y.; Jang, D. M.; Song, Y. M.; Kim, H. S.; Cho, Y. J.; Myung, Y.; Park, J. Synthesis of Au-Cu2S core-shell nanocrystals and their photocatalytic and electrocatalytic activity. Journal of Physical Chemistry C 2010, 114, 22141-22146.
    53. An, C. H.; Wang, J. Z.; Jiang, W.; Zhang, M. Y.; Ming, X. J.; Wang, S. T.; Zhang, Q. H. Strongly visible-light responsive plasmonic shaped AgX:Ag (X = Cl, Br) nanoparticles for reduction of CO2 to methanol. Nanoscale 2012, 4, 5646-5650.
    54. Tan, J. Z. Y.; Fernandez, Y.; Liu, D.; Maroto-Valer, M.; Bian, J. C.; Zhang, X. W. Photoreduction of CO2 using copper-decorated TiO2 nanorod films with localized surface plasmon behavior. Chemical Physics Letters 2012, 531, 149-154.
    55. Lin, Y. G.; Hsu, Y. K.; Chen, Y. C.; Wang, S. B.; Miller, J. T.; Chen, L. C.; Chen, K. H. Plasmonic Ag@Ag-3(PO4)(1-x) nanoparticle photosensitized ZnO nanorod-array photoanodes for water oxidation. Energy & Environmental Science 2012, 5, 8917-8922.
    56. Silva, C. G.; Juarez, R.; Marino, T.; Molinari, R.; Garcia, H. Influence of excitation wavelength (uv or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water. Journal of the American Chemical Society 2011, 133, 595-602.
    57. Lee, J.; Mubeen, S.; Ji, X. L.; Stucky, G. D.; Moskovits, M. Plasmonic photoanodes for solar water splitting with visible light. Nano Letters 2012, 12, 5014-5019.
    58. Mubeen, S.; Lee, J.; Singh, N.; Kramer, S.; Stucky, G. D.; Moskovits, M. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nature Nanotechnology 2013, 8, 247-251.
    59. Alvaro, M.; Cojocaru, B.; Ismail, A. A.; Petrea, N.; Ferrer, B.; Harraz, F. A.; Parvulescu, V. I.; Garcia, H. Visible-light photocatalytic activity of gold nanoparticles supported on template-synthesized mesoporous titania for the decontamination of the chemical warfare agent Soman. Applied Catalysis B-Environmental 2010, 99, 191-197.
    60. Di Vece, M.; Laursen, A. B.; Bech, L.; Maden, C. N.; Duchamp, M.; Mateiu, R. V.; Dahl, S.; Chorkendorff, I. Quenching of TiO2 photo catalysis by silver nanoparticles. Journal of Photochemistry and Photobiology a-Chemistry 2012, 230, 10-14.
    61. Indrakanti, V. P.; Kubicki, J. D.; Schobert, H. H. Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook. Energy & Environmental Science 2009, 2, 745-758.
    62. Dhakshinamoorthy, A.; Navalon, S.; Corma, A.; Garcia, H. Photocatalytic CO2 reduction by TiO2 and related titanium containing solids. Energy & Environmental Science 2012, 5, 9217-9233.
    63. Navalon, S.; Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Photocatalytic CO2 reduction using non-titanium metal oxides and sulfides. ChemSusChem 2013, 6, 562-577.
    64. Primo, A.; Corma, A.; Garcia, H. Titania supported gold nanoparticles as photocatalyst. Physical Chemistry Chemical Physics 2011, 13, 886-910.
    65. Fouad, D. M.; Mohamed, M. B. Comparative study of the photocatalytic activity of semiconductor nanostructures and their hybrid metal nanocomposites on the photodegradation of malathion. Journal of Nanomaterials 2012.
    66. Mahmoud, M. A.; Qian, W.; El-Sayed, M. A. Following charge separation on the nanoscale in Cu2O-Au nanoframe hollow nanoparticles. Nano Letters 2011, 11, 3285-3289.
    67. Wang, C. J.; Ranasingha, O.; Natesakhawat, S.; Ohodnicki, P. R.; Andio, M.; Lewis, J. P.; Matranga, C. Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2. Nanoscale 2013, 5, 6968-6974.
    68. Mankidy, B. D.; Joseph, B.; Gupta, V. K. Photo-conversion of CO2 using titanium dioxide: enhancements by plasmonic and co-catalytic nanoparticles. Nanotechnology 2013, 24.
    69. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37.
    70. Warren, S. C.; Thimsen, E. Plasmonic solar water splitting. Energy & Environmental Science 2012, 5, 5133-5146.
    71. Babu, V. J.; Vempati, S.; Uyar, T.; Ramakrishna, S. Review of one-dimensional and two-dimensional nanostructured materials for hydrogen generation. Physical Chemistry Chemical Physics 2015, 17, 2960-2986.
    72. Atwater, H. A.; Polman, A. Plasmonics for improved photovoltaic devices. Nature Materials 2010, 9, 205-213.
    73. Ming, T.; Chen, H. J.; Jiang, R. B.; Li, Q.; Wang, J. F. Plasmon-controlled fluorescence: beyond the intensity enhancement. Journal of Physical Chemistry Letters 2012, 3, 191-202.
    74. Sonnichsen, C.; Franzl, T.; Wilk, T.; von Plessen, G.; Feldmann, J.; Wilson, O.; Mulvaney, P. Drastic reduction of plasmon damping in gold nanorods. Physical Review Letters 2002, 88.
    75. Chen, H. J.; Kou, X. S.; Yang, Z.; Ni, W. H.; Wang, J. F. Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 2008, 24, 5233-5237.
    76. Ting, H.-W.; Lin, Y.-K.; Wu, Y.-J.; Chou, L.-J.; Tsai, C.-J.; Chen, L.-J. Large area controllable hexagonal close-packed single-crystalline metal nanocrystal arrays with localized surface plasmon resonance response. Journal of Materials Chemistry C 2013, 1, 3593.
    77. Lin, G. J.; Wang, H. P.; Lien, D. H.; Fu, P. H.; Chang, H. C.; Ho, C. H.; Lin, C. A.; Lai, K. Y.; He, J. H. A broadband and omnidirectional light-harvesting scheme employing nanospheres on Si solar cells. Nano Energy 2014, 6, 36-43.
    78. Lin, Y. K.; Ting, H. W.; Wang, C. Y.; Gwo, S.; Chou, L. J.; Tsai, C. J.; Chen, L. J. Au nanocrystal array/silicon nanoantennas as wavelength-selective photoswitches. Nano Letters 2013, 13, 2723-2731.
    79. Mahanti, M.; Basak, D. Highly enhanced UV emission due to surface plasmon resonance in Ag–ZnO nanorods. Chemical Physics Letters 2012, 542, 110-116.
    80. Zheng, B. Y.; Zhao, H.; Manjavacas, A.; McClain, M.; Nordlander, P.; Halas, N. J. Distinguishing between plasmon-induced and photoexcited carriers in a device geometry. Nature Communications 2015, 6, 7797.
    81. Brongersma, M. L.; Halas, N. J.; Nordlander, P. Plasmon-induced hot carrier science and technology. Nature Nanotechnology 2015, 10, 25-34.
    82. Puga, A. V.; Forneli, A.; García, H.; Corma, A. production of H2by ethanol photoreforming on Au/TiO2. Advanced Functional Materials 2014, 24, 241-248.
    83. Wang, F.; Melosh, N. A. Plasmonic energy collection through hot carrier extraction. Nano Letters 2011, 11, 5426-5430.
    84. Lee, Y. K.; Jung, C. H.; Park, J.; Seo, H.; Somorjai, G. A.; Park, J. Y. Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes. Nano Letters 2011, 11, 4251-4255.
    85. Chalabi, H.; Schoen, D.; Brongersma, M. L. Hot-electron photodetection with a plasmonic nanostripe antenna. Nano Letters 2014, 14, 1374-1380.
    86. Liu, N.; Mesch, M.; Weiss, T.; Hentschel, M.; Giessen, H. Infrared perfect absorber and its application as plasmonic sensor. Nano Letters 2010, 10, 2342-2348.
    87. Li, W.; Valentine, J. Metamaterial perfect absorber based hot electron photodetection. Nano Letters 2014, 14, 3510-3514.
    88. Sundararaman, R.; Narang, P.; Jermyn, A. S.; Goddard, W. A., 3rd; Atwater, H. A. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nature Communications 2014, 5, 5788.
    89. Manjavacas, A.; Liu, J. G.; Kulkarni, V.; Nordlander, P. Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano 2014, 8, 7630-7638.
    90. Sau, T. K.; Rogach, A. L. Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Advanced Materials 2010, 22, 1781-1804.
    91. Sau, T. K.; Rogach, A. L.; Jackel, F.; Klar, T. A.; Feldmann, J. Properties and applications of colloidal nonspherical noble metal nanoparticles. Advanced Materials 2010, 22, 1805-1825.
    92. Liu, Z. W.; Hou, W. B.; Pavaskar, P.; Aykol, M.; Cronin, S. Plasmon resonant enhancement of photocatalytic water splitting. Abstracts of Papers of the American Chemical Society 2011, 242.
    93. Jin, Y. D.; Jia, C. X.; Huang, S. W.; O'Donnell, M.; Gao, X. H. Multifunctional nanoparticles as coupled contrast agents. Nature Communications 2010, 1.
    94. Guerrero-Martinez, A.; Perez-Juste, J.; Liz-Marzan, L. M. Recent Progress on silica coating of nanoparticles and related nanomaterials. Advanced Materials 2010, 22, 1182-1195.
    95. Wang, P.; Huang, B. B.; Dai, Y.; Whangbo, M. H. Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. Physical Chemistry Chemical Physics 2012, 14, 9813-9825.
    96. Zhou, L.; Zhang, C.; McClain, M. J.; Manavacas, A.; Krauter, C. M.; Tian, S.; Berg, F.; Everitt, H. O.; Carter, E. A.; Nordlander, P.; Halas, N. J. Aluminum nanocrystals as a plasmonic photocatalyst for hydrogen dissociation. Nano Letters 2016, 16, 1478-1484.
    97. Knight, M. W.; Liu, L. F.; Wang, Y. M.; Brown, L.; Mukherjee, S.; King, N. S.; Everitt, H. O.; Nordlander, P.; Halas, N. J. Aluminum plasmonic nanoantennas. Nano Letters 2012, 12, 6000-6004.
    98. Knight, M. W.; King, N. S.; Liu, L. F.; Everitt, H. O.; Nordlander, P.; Halas, N. J. Aluminum for plasmonics. ACS Nano 2014, 8, 834-840.
    99. Martin, J.; Plain, J. Fabrication of aluminium nanostructures for plasmonics. Journal of Physics D-Applied Physics 2015, 48.

    QR CODE