簡易檢索 / 詳目顯示

研究生: 盧美廷
Lu, Mei-Ting
論文名稱: 產氫觸媒反應流床設計製作
Analysis and Design of Novel Reactors for Hydrogen Generation
指導教授: 陳理定
Chen, Li-Ting
楊鏡堂
Yang, Jing-Tang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 115
中文關鍵詞: 流道設計產氫創新反應器硼氫化鈉
外文關鍵詞: design of flow channel, hydrogen generation, novel reactor, sodium borohydride
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主旨在設計高產氫效率的流動型產氫觸媒反應流床,以氧化鈷為催化劑水解硼氫化鈉產生氫氣與過硼酸鈉。利用單因子實驗法找出影響產氫觸媒流床設計之參數,進而藉由實驗分析比較,設計高化學轉換效率及穩定氫氣生成之創新產氫觸媒流床。本創新產氫觸媒流床以具有氣道之流道概念可有效分離水溶液及氫氣,迅速導出所需氫氣,增加硼氫化鈉與催化劑接觸機會;本流床的另一特點以流道上游具有液氣不互擾之流道空間,可使提供反應之硼氫化鈉不受氫氣生成影響,增加氫氣生成之穩定性,藉由以上特點,將可大幅提高產氫效率及抑制不穩定之氫氣生成率。
    實驗中探討傳統流動型產氫觸媒流床之產氫特性,以此為依據設計創新產氫觸媒流床,探討創新流床之體積流率、催化劑擺放位置、流床面積比、流床寬度比、流床大小及流床角度對化學轉換效率與氫氣生成振幅之影響,並以多相流流場及傅立葉轉換比較傳統流床及創新流床之特點。本文成功利用流場改質並驗證具有氣道及液氣不互擾空間,將有助於化學轉換效率及氫氣生成之穩定性,本創新產氫觸媒流床可應用於各類型氫能工具機前端,適用於多相流產氫,可舒緩能源短缺及環境保護之問題。


    This study emphasizes on developing a novel reactor for hydrogen generation. Oxide cobalt is used as catalyst to hydrolyze sodium borohydride. In order to find the factors which influence chemical efficiency and hydrogen generation amplitude, one-factor-at-a-time method is used in the experiment. This novel reactor can separate liquid and hydrogen based on the concept of air flow channel; therefore, hydrogen can be quickly removed from catalyst surface. The chance of contact between sodium borohydride and oxide cobalt can be increased, and the efficiency of chemical reaction can also be improved. Another characteristic of this novel reactor is the steady rate of hydrogen generation. Because of the upstream space of flow channel, sodium borohydride is not influenced by hydrogen generation. Thus sodium borohydride can be continuously supplied to catalyze the generation of hydrogen. According to these two characteristics, this novel reactor can improve chemical efficiency and decrease hydrogen generation amplitude.
    This research first discusses characteristics of a conventional reactor by experiments, and then to design a novel reactor based on the results. The effects of volumetric flow rate, catalyst position, the area and width ratio of the reactor, and also the size and angle of the reactor on chemical conversion of this novel reactor have been systematically investigated. Finally, by using multiphase flow field and the Fourier Transform, the results can be compared between the conventional reactor and the novel one. In this study, it is proved that a reactor which has air flow channel and upstream space can improve chemical efficiency and decrease hydrogen generation amplitude. This novel reactor can be applied to facilities that needed hydrogen as a power source, and it is suitable for multiphase hydrogen generation. It can reduce the problem of energy shortage and achieve environmental friendliness.

    摘 要 i Abstract ii 誌 □謝 iii 目 錄 iv 圖表目錄 vii 符號說明 xii 第一章 前 言 1 第二章 文獻回顧 8 2-1 反應速率 9 2-1.1 催化劑材料 9 2-1.2 催化劑外型 13 2-1.3 溫度 14 2-2 轉換率 14 2-2.1 表面張力 15 2-2.2 二次流 16 2-3 視流法發展 18 2-4 研究動機、目的與貢獻 19 第三章 分析方法 21 3-1 分析方法 22 3-1.1 單因子實驗法 22 3-1.2 流場可視化 23 3-1.3 傅立葉轉換 23 3-1.4 效率與振幅計算方法 24 3-2 實驗方法 25 3-2.1 實驗步驟 26 3-2.2 實驗架構 27 3-2.3 催化劑 29 3-3 流動型產氫觸媒流床研製 30 3-3.1 傳統產氫觸媒流床 31 3-3.2 催化劑多次使用測試流床 35 3-3.3 流道高度測試流床 37 3-3.4 創新產氫觸媒流床 38 3-4 實驗儀器設備 41 3-4.1 高速攝影機 41 3-4.2 氣體流量計 43 3-4.3 微量注射泵浦 44 3-4.4 微量測量儀 46 3-4.5 迷你去離子水機 46 3-4.6 閃頻儀 48 3-4.7 數位式溫度計 48 第四章 結果與討論 51 4-1 實驗建立 52 4-1.1 催化劑重複使用 52 4-1.2 氫氣濕度 55 4-1.3 流道高度測試 57 4-2 傳統產氫觸媒流床 65 4-2.1 催化劑面積大小、體積流率 65 4-2.2 催化劑擺放位置 73 4-3 創新產氫觸媒流床 78 4-3.1 體積流率 78 4-3.2 催化劑擺放位置 82 4-3.3 流床寬度比、流床面積比 86 4-3.4 不同流道大小 89 4-3.5 流床角度 90 4-4 創新產氫觸媒流床與傳統產氫觸媒流床比較 96 第五章 結論與未來展望 103 5-1 結論 103 5-2 未來展望 105 第六章 參考文獻 107 甘梯圖(GANTT CHART) 112 作 者 簡 歷 113

    [1] Working Group I, Intergovernmental Panel on Climate Change, IPCC, retrieved on 2008/07/12, report available at: http://www.ipcc.ch/pdf/climate-
    changes-2001/synthesis-syr/english/wg1-technical-summary.pdf, 2001.
    [2] Taiwan Fuel Cell Informaiton, retrieved on 2008/06/25, report available at: http://www.tfci.org.tw/Fc/index.asp, 2008.
    [3] 衣寶廉,“燃料電池-高效、環保的發電方式,” 五南出版社,台灣,2003/04。
    [4] 衣寶廉,“燃料電池-原理與應用,”五南出版社,台灣,2007/06。
    [5] 楊志忠、林頌恩、韋文誠,“科學發展,”367期,2003/07。
    [6] Institute of Chemistry, retrieved on 2008/06/23, report available at: http://chem.ch.huji.ac.il/history/grove.htm.
    [7] 鄭耀宗、鄭雅堂、袁文孝、徐真明,“現場型磷酸燃料應用於大用戶之可行性研究,”民國84年度台電公司研究計畫,1995。
    [8] 左峻德,“燃料電池之特性與運用 – 兼論台灣燃料電池產業之發展,”行政院國家科學委員會科學技術資料中心,2001。
    [9] 林昇佃等,“燃料電池 - 新世紀能源,”滄海書局,台灣,2006/02。
    [10] EG & G Services, Parsons, Inc., and Science Applications International Corporation, “Fuel Cell Handbook,” fifth edition, 2000.
    [11] Antig Fuel Cell Innovation, retrieved on 2008/06/25, report available at: http://www.antig.com/ch/technology/technology_fuel_cell_types.htm.
    [12] S. Satyapal, C. Read, G. Ordaz, and G. Thomas, DOE Hydrogen Program Annual Merit Review Proceedings, retrieved on 2008/12/20, report available at: http://www.hydrogen.energy.gov/annual_review06_plenary.html, 2006.
    [13] D. Gervasio, Arizona State University, retrieved on 2008/06/25, report available at: http://www.azsolarcenter.com/technology/fuelcells/pdfs/
    presentation.pdf, 2005.
    [14] H. I. Schlesinger, H. C. Brown, A. E. Finholt, J. R. Gilbreath, H. R. Hoekstra, and E. K. Hyde, “Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen,” Journal of the American Chemical Society 75, (1953) 215-219.
    [15] S. C. Amendola, S. L. Sharp-Goldman, M. S. Janjua, N. C. Spencer, M. T. Kelly, P. J. Petillo, and M. Binder, “A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst,” International Journal of Hydrogen Energy 25 (2000) 969–975.
    [16] S. C. Amendola, S. L. Sharp-Goldman, M. S. Janjua, M. T. Kelly, P. J. Petillo, and M. Binder, “An ultrasafe hydrogen generator: aqueous, alkaline borohydride solutions and Ru catalyst,” Journal of Power Sources 85 (2000) 186–189.
    [17] H. C. Brown, and C. A. Brown, “New, highly active metal catalysts for the hydrolysis of borohydride,” Journal of the American Chemical Society 84 (1962) 1493–1494.
    [18] Y. Kojima, K. I. Suzuki, K. Fukumoto, M. Sasaki, T. Yamamoto, Y. Kawai, and H. Hayashi, “Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide,” International Journal of Hydrogen Energy 27 (2002) 1029 – 1034.
    [19] C. Wu, H. Zhang, and B. Yi, “Hydrogen generation from catalytic hydrolysis of sodium borohydride for proton exchange membrane fuel cells,” Catalysis Today 93–95 (2004) 477–483.
    [20] S. Özkar, and M. Zahmakıran, “Hydrogen generation from hydrolysis of sodium borohydride using Ru(0) nanoclusters as catalyst,” Catalysis communications 8 (2005) 1767–1771.
    [21] A. M. F. R. Pinto, D. S. Falcao, R. A. Silva, and C. M. Rangel, “Hydrogen generation and storage from hydrolysis of sodium borohydride in batch reactors,” International Journal of Hydrogen Energy 31 (2006) 1341–1347.
    [22] D. Xu, H. Zhang, and W. Ye, “Hydrogen generation from hydrolysis of alkaline sodium borohydride solution using Pt/C catalyst,” Catalysis Communications 8 (2007) 1767–1771.
    [23] S. J. Kim, J. Lee, K. Y. Kong, C. R. Jung, I. G. Min, S. Y. Lee, H. J. Kim, S. W. Nam, and T. H. Lim, “Hydrogen generation system using sodium borohydride for operation of a 400W-scale polymer electrolyte fuel cell stack,” Journal of Power Sources 170 (2007) 412–418.
    [24] J. Zhang, Y. Zheng, J. P. Gore, and T. S. Fisher, “1 kWe sodium borohydride hydrogen generation system, Part I: Experimental study,” Journal of Power Sources 165 (2007) 844–853.
    [25] J. Zhang, Y. Zheng, J. P. Gore, I. Mudswar, and T. S. Fisher, “1 kWe sodium borohydride hydrogen generation system, Part II: Reactor modeling,” Journal of Power Sources 170 (2007) 150–159.
    [26] R. Krishna, and S. T. Sie, “Strategies for multiphase reactor selection,” Chemical Engineering Science 49 (24A) (1994) 4029-4065.
    [27] Q. Zhang, G. M. Smith, and Y. Wu, “Catalytic hydrolysis of sodium borohydride in an integrated reactor for hydrogen generation,” International Journal of Hydrogen Energy 32 (2007) 4731–4735.
    [28] J. Kohnle, G. Waibel, R. Cernosa, M. Storz, H. Ernst, H. Sandmaier, T. Strobelt, and R. Zengerle, “A unique solution for preventing clogging of flow channels by gas bubbles,” The fifteenth IEEE international conference (2002) 77–80.
    [29] C. Litterst, S. Eccarius, C. Hebling, R. Zengerle, and P. Koltay, “Increasing μDMFC efficiency by passive CO2 bubble removal and discontinuous operation,” Journal of Micromechanics and Microengineering 16 (2006) S248–S253.
    [30] D. D. Meng, and C. J. Kim, “Self-aligned micro bubble arrays by using surface tension,” ASME International Mechanical Engineering Congress and Exposition (Anaheim, California, November), (2004) CD: IMECE 2004-62182
    [31] D. D. Meng, J. Kim, and C. J. Kim, “A degassing plate with hydrophobic bubble capture and distributed venting for microfluidic devices,” Journal of Micromechanics and Microengineering 16 (2006) 419–424.
    [32] D. D. Meng, C. H. Ho, and C. J. Kim, “A methanol-tolerant gas-venting microchannel for a microdirect methanol Fuel Cell,” Journal of Microelectromechanical Systems 16 (6) (2007) 1403–1410.
    [33] P. Moulin, J. C. Rouch, C. Serra, M. J. Clifton, and P. Aptel, “Mass transfer improvement by secondary flows: Dean vortices in coiled tubular membranes,” Journal of Membrane Science 114 (1996) 235-244.
    [34] Z. Q. Wang, and N. S. Cheng, “Secondary flows over artificial bed strips,” Advances in Water Resources 28 (2005) 441–450.
    [35] S. J. Kline, 流場觀測講義,國家流體力學影片委員會 retrieved on 2008/05/21, report available at: http://www.me.ncu.edu.tw/energy/ME393/
    3%20flow%20visualization.pdf.
    [36] O. Reynolds, “An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels,” Philosophical Transactions of the Royal Society of London 174 (1883) 935–982.
    [37] L. J. Lu, and C. R. Smith, “Image processing of hydrogen bubble flow visualization for determination of turbulence statistics and bursting characteristics,” Experiments in Fluids 3 (1985) 349–356.
    [38] A. J. Smts, and T. T. Lim, “Flow Visualization – Techniques and Examples,” Imperial College Press, London, 2000.
    [39] 黃興閎,“背向階梯流場之剪流層非穩態特性研究,”國立清華大學動力機械工程學系碩士論文,2004。
    [40] 楊智淵,“完美的互動 – 魚鰭平衡機制的探討及其應用,”國立清華大學動力機械工程學系,國科會大專生參與專題研究計畫,2006。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE