簡易檢索 / 詳目顯示

研究生: 羅富維
Fu-Wei Lo
論文名稱: 經γ- ray 照射之聚四甲基一戊烯的非等溫結晶動力研究
Non-isothermal crystallization kinetics of Irradiated Poly(4-methyl-1-pentene)
指導教授: 李三保
Sanboh Lee
傅應凱
Ying-Kai Fu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 89
中文關鍵詞: 非等溫結晶熱差分析儀聚四甲基一戊烯加瑪射線動力
外文關鍵詞: non-isothermal crystallization, TPX, Ozawa, gamma-ray, kinetics
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文為研究聚四甲基一戊烯(Poly(4-methyl-l-pentene), TPX)於非等溫結晶過程的動力行為。我們針對TPX(聚四甲基一戊烯之商業用名)的試片各照射250 kGy到1000 kGy的四種加瑪射線(gamma-ray)劑量,研究照射劑量對動力行為影響,照射環境分別為在空氣及氧氣的兩種條件。對非等溫過程取七種不同的冷卻速率為每分鐘1℃、2.5℃、5℃、10℃、20℃、40℃ 及 60℃以研究非等溫結晶。
    經由熱差分析儀(Differential Scanning Calorimetry, DSC)測到資料顯示,低加瑪射線劑量條件下的波形是較高的加瑪射線劑量顯得明顯意見,在通入氧氣的條件後照射,波形是更不易見的,藉由波形計算放熱量以求得相對結晶曲線,而照射劑量與冷卻速率皆會影響結晶溫度。
    獲得相對結晶曲線後利用Ozawa理論對聚四甲基一戊烯研究其結晶參數。在研究過程我們對部份發生雙波的曲線使用修改過的高斯函數做分離,以獲得正確的相對結晶曲線,解決原相對結晶曲線在同劑量下不同冷卻速率卻發生相交的問題。
    使用Ozawa理論分析後,我們發現Ozawa指數有兩種趨勢,一是相同冷卻速率區間中,隨著結晶溫度下降(照射影響)Ozawa指數亦隨之下降,而另一趨勢為相同照射劑量下,隨著冷卻速率增加Ozawa指數亦隨之增加。分析結果顯示Ozawa指數在1.0~3.0之間。
    經由研讀Ozawa非等溫結晶動力理論,我們發現其理論之原始實驗數據是基於低冷卻速率(1℃~4℃)下建立的,因此許多文章提及Ozawa理論不合用,是應先回歸其理論適用範圍,再進一步討論為宜,相當多論文之冷卻速率選取是超過範圍的。另外我們亦對活化能進行估算,採用Kissinger理論,根據其原始文獻推導,其活化能計算式為適用於結晶成長速率最大值處的溫度,相當於結晶量對時間的二次微分處,而不一定發生於峰值溫度處。


    We apply gamma ray irradiation from 250 kGy to 1000 kGy on Poly(4-methyl-l-pentene) (commercial name is TPX) specimens in air and oxygen environment. During DSC tests, we set different cooling rates to measure the data of TPX specimens. We proceeded the cooling rate by 1℃、2.5℃、5℃、10℃、20℃、40℃ and 60℃ per minute.
    The DSC data indicated that the specimens with low gamma-ray dose have large peak which is clear to see, and in high gamma-ray dose the peak become small and not easy to see, especially the specimens irradiated in oxygen environment.
    In order to proceed the non-isothermal crystallization kinetics of irradiated Poly(4-methyl-1-pentene), we separate the double peak curve by modified Gaussian equation with gama distribution .
    For TPX non-isothermally crystallized by cooling at constant rates, we can find exponent n in Ozawa plots with two tendencies. One is that Ozawa exponent n decreases with decreasing crystallization temperature for the same interval of cooling rates, the other is the exponent n increasing with increasing cooling rates. We have a conclusion that Ozawa apparach method can not meet the high cooling rates data. For the study of Poly(4-methyl-l-pentene), it can be seen that Ozawa exponent n increases with increasing crystallization temperature, n is almost from 1.0 to 3.0, which means the pre-determined nuclei might exist before cooling.

    Abstract Acknowledgment Contents Introduction1 Experimental Procedure8 Results and Discussion10 Conclusions20 References22 List of Tables26 Tables29 Figure Captions46 Figures52

    References

    1. L.C. Lopez, G. L. Wilkes, P. M. Stricklen, and S. A. White, “Synthesis, Structure and Properties of Poly(4-Methyl-1-pentene)” J. Macromol. Sci., Rev. Macromol. Chem. Phys., c32 (3&4).301-406 (1992).
    2. H. Kusaragi, M. Takase, Y. Chatani and H. Tadokoro, “Crystal strcture of isotactic poly(4-methyl-1-pentene)”, J. Polym. Sci. : Polym. Phys., 16, 131-142 (1978).
    3. C. De Rosa, “Crystal Structure of Form II of Isotatic Poly(4-methyl-1pentene)”, Macromolecules, 36, 6087-6094 (2003).
    4. C. De Rosa, “Chain Conformation of Form IV of Isotatic Poly(4-methyl-1-pentene)”, Macromolecules, 32, 935-938 (1999).
    5. W, Bassi, O. Bonsignori, G. P. Lorenzi, P. Pino, P. Corradini, P. A. Temussi, “Structure and Optical Activity of a Crystalline Modification of Isotactic Poly-(S)-4-methyl-1-hexene”, J.Polym.Sci.,Polym.Phys. Ed. 9, 193-208 (1971).
    6. G. Charlet, G. Delmas, F. J. Revol, R. St. Manley,“Effect of solvent on the polymorphism of poly(4-methylpentene-1):1.Solution-grown single crystals”, Polymer, 25, 1613-1618 (1984).
    7. G. Charlet, G. Delmas,“Effect of solvent on the polymorphism of poly(4-methylpentene-1):2.Crystallization in semi-dilute solutions”, Polymer, 25, 1619-1625, (1984).
    8. C. De Rosa, F. Auriemma, A. Borriello and P. Corradini, ”Up-down disorder in the crystal structure of form Ⅲ of isotactic poly (4-methyl-1-pentene)”, Polymer Vol. 36 No. 25, pp. 4723-4727 (1995).
    9. G. Charlet, G. Delmas,““Modification V”of Poly 4-methylpentene-1 from Cyclopentane Solutions and Gels”,Polym.Bull.,6,367-373 (1982).
    10. S. M. Aharoni, G. Charlet, G. Delmas,“Investgation of Solutions and Gels of Poly(4-methyl-1-pentene) in Cyclohexane and Decalin by Viscosimetry, Calorimetry, and X-ray Diffraction. A new Form of Poly(4-methyl-1-pentene) from Gels” Macromolecules, 14, 1390-1394 (1981).
    11. C. De Rosa, V. Venditto, G. Guerra, and P. Corradini, “Chain Conformation and unit Cell in the Crystalline Phase of Syndiotactic Poly(4-methylpentene-1)”, Macromolecules, 25, 6938-6942 (1992).
    12. C.Y. Shih, K. R. Lee and J.Y. Lai, “60Co γ-ray irradiation modified poly(4-methyl-1-pentene) membrane for oxygenator”, Eur. Polym. J. Vol.30, No.5, 629-634, (1994).
    13. M. Avrami,“Kinetics of Phase Change I, General Theory”, J Chem. Phys. Vol. 7, 1103-1112, (1939).
    14. M. Avrami,“Kinetics of Phase Change II, Transformation-Time Relations for random Distribution of Nuclei”, J Chem. Phys. Vol. 8, 212-224, (1940).
    15. M. Avrami,“Kinetics of Phase Change III, Granulation, Phase Change, and Microstructure ”, J Chem. Phys. Vol. 9, 177-190, (1941).
    16. T.Ozawa,“Kinetics of non-isothermal crystallization”, Polymer 12, 150-158, (1971).

    17. K.Y. Chi, “Non-isothermal Crystallization Kinetics, Multiple Melting Behaviors and Crystal Structure Simulation of Poly[(ethylene)- co-(trimethylene terephthalate)]s”, Master Thesis, National Sun Yat-Sen University, Kaoshiung, Taiwan, (2002).
    18. T.G. Gopakumar, J.A. Lee, M. Kontopoulou, J.S. Parent,“Influence of clay exfoliation on the physical properties of montmorillonite /polyethylene composites”, Polymer. 43, 5483-5491, (2002).
    19. L.C. Lopez, G. L. Wilkes,“Non-isothermal crystallization kinetics of poly(p-phenylene sulphide)”, Polymer. 30, 882-887, (1989).
    20. T.X. Liu, Z.S. Mo, S.G. Wang, H.F. Zhang,“Nonisothermal Melt and Cold Crystallization Kinetics of Poly(Aryl Ether Etther Ketone Ketone) ”, Polym Eng Sci. 37, 568-575, (1997).
    21. Y.C. Ou, M.Y. Si, Z.Z. Yu,“Nonisothermal Kinetics of In Situ Polyamide-6 Blended with Poly(phenylene oxide) ”, J. of Appl. Polym. Sci. 73, 767-775, (1999).
    22. J.G. Gao, S.R. Li, Z.T. Li,“Melting behavior and nonisothermal crystallization kinetics of metallocene polyethylene ”, Chemical Journal on Internet Vol. 5, No.10, 81-93, (2003).
    23. G. Z. Papageorgiou, G. P. Karayannidis,“Crystallization and melting behaviour of poly(butylenes naphthalene-2,6-dicarboxylate)”, Polymer 42, 2637-2645, (2001).
    24. S. H. Yang, ”The physical and mechanical properties of poly (4-methyl-1-pentene) ”, Master Thesis, National Tsing Hua University, Hsinchu, Taiwan, (2001).
    25. H.E. Kissinger,“Variation of peak temperature with heating rate in differential thermal analysis”, Journal of Research of the National Bureau of Standards . Vol.57, No.4, 217-221, (1956).
    26. H.E. Kissinger,“Reaction Kinetics in Differential Thermal Analysis”, Analytical Chemistry. Vol.29, No.11, 1702-1706, (1957)).
    27. Y.J. Li, X.Y. Zhu, D.Y. Yan,“Isothermal and Nonisothermal Crystallization Kinetics of Nylon 10 12 ”, Polymer Engineering and Science. Vol.40, No.9, 1989-1995, (2000).
    28. F.C. Chiu, C.G. Peng, Q. Fu,“Non-isothermal Crystallization and Multiple Melting Behavior of Syndiotactic Polystyrene Pre-melting Temperature Effects ”, Polymer Engineering and Science. Vol.40, No.11, 2397-2406, (2000).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE