簡易檢索 / 詳目顯示

研究生: 郭仁豪
Guo, Ren-Hao
論文名稱: 鈀奈米粒子電催化二氧化碳還原反應與其電化學表現
Electrochemical Behaviors and Electrocatalytic Reduction of CO2 on Palladium Nanoparticles
指導教授: 胡啟章
Hu, Chi-Chang
口試委員: 衛子健
蔡德豪
潘詠庭
張淑閔
張仍奎
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 109
語文別: 英文
論文頁數: 181
中文關鍵詞: 電催化二氧化碳還原反應電化學
外文關鍵詞: electrocatalysis, carbon dioxide reduction reaction, palladium, electrochemistry
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於鈀金屬對二氧化碳電化學還原反應具有獨特的催化能力,本研究使用鈀奈米粒子/碳黑觸媒 (Pd/XC72) 塗佈之氣體擴散電極與旋轉盤環電極進行二氧化碳電化學還原反應的研究。利用電化學分析來探討在還原反應進行中,鈀金屬上之氫吸脫附的電化學反應變化,以及其對二氧化碳還原催化能力的影響。在第4章節中確認一氧化碳是反應的主要產物之一,並且發現PdHx的α和β吸收相位量,會受到一氧化碳吸附於鈀奈米粒子上 (Pd NPs) 活性位的影響而減少。此外,在較正的施加電位範圍中,當大多數吸附於Pd/XC72活性位上的一氧化碳被去除時,觸媒對於氫氣產生反應以及二氧化碳電化學還原反應的活性會被大幅活化,顯示在此過電位範圍中,還原反應的速率受到一氧化碳脫附速率的限制。
    在第5章節中,本文藉由在氣體擴散電極與旋轉盤環電極上進行電化學分析,證明Pd/XC72的選擇性會受到鈀表面的氫吸附覆蓋率的影響。當Pd/XC72上的氫吸附覆蓋率低於約0.2時,二氧化碳還原反應的主要產物會從甲酸轉變成一氧化碳。本研究更進一步發現可能是羧基中間體 (COOH*) 在白金環狀電極上的氧化訊號峰,是為此中間體存在於二氧化碳電化學還原反應中的重要證據。
    最後,在第6章節中,本研究開發出修飾鈀表面的新製程。藉由在醋酸溶液中加熱迴流的處理方式,Pd/XC72的一氧化碳自我毒化速率會被大幅地降低。此外本研究發現在紫外-可見光譜中,可以觀察到醋酸根離子吸附於鈀金屬表面、生成類似醋酸鈀鹽類所產生的吸收光訊號,並認為這些物質在鈀金屬表面的溶解與再沉積,會使得鈀金屬表面上具有較高一氧化碳生成速率的邊緣/角活性位的數量下降。其結果使得經醋酸處理的Pd/XC72的甲酸產生電量為原本的4倍,顯示此種製程可以顯著提升Pd/XC72對於二氧化碳還原產生甲酸的選擇性與催化能力。


    Due to the unique catalytic ability of electrochemical reduction reaction of carbon dioxide (CO2ER) on palladium, the palladium nanoparticles/carbon black (Pd/XC72) is studied on gas diffusion electrodes (GDE) and rotating ring disk electrode (RRDE). This work discusses the change in adsorption/absorption responses of hydrogen on palladium during CO2ER and its effects on the catalytic ability and selectivity of palladium for the CO2ER with electrochemical analysis. In chapter 4, carbon monoxide (CO) is confirmed to be one of the main products of CO2ER on Pd/XC72. The adsorption of CO on the active sites of the palladium nanoparticles (Pd NPs) is found to reduce the amounts of PdHx in the α and β phases. Also, the activities of Pd/XC72 for both hydrogen evolution reaction (HER) and CO2ER within less negative potential range were greatly regenerated when most of adsorbed CO molecules on active sites were removed, which showed that the CO2ER rate was limited by the desorption rate of CO in the less negative potential region.
    In chapter 5, the selectivity of Pd/XC72 is proved to be dependent on the coverage of H adsorption (Hads) from the electrochemical analyses through the usage of both GDE and RRDE. The main product of CO2ER on Pd/XC72 is changed from formate to CO when the coverage of Hads is lower than ca. 0.2. In addition, in the RRDE analyses, a peak corresponding to the oxidation of carboxyl intermediate (COOH*) on the platinum ring electrode is found, which is also a strong evidence for the existence of COOH* intermediate during the CO2ER.
    Finally, in chapter 6, a new way was developed to modify the surface of Pd NPs. By refluxing treatment in acetic acid, the rate of CO self-poisoning on Pd/XC72 was significantly reduced. Moreover, the adsorption of acetates onto the surface of Pd to form the Pdx(OAc)2x-like species during the refluxing in glacial acetic acid is observed in UV-vis spectra. The dissolution and re-deposition of these species are considered to be responsible for the changes in the morphology of Pd and the decrease in the amount of edge/corner sites, which have higher rates of CO production. As a result, the charge of formate formation on Pd/XC72 is about 4 times after this acetic acid treatment, showing that the selectivity and activity of the CO2ER to formate on Pd/XC72 are enhanced obviously.

    Abstract 摘要 Table of Contents List of Figures List of Tables Chapter 1 Introduction and objective-------------------------1 1-1 Introduction---------------------------------------------1 1-2 Objective------------------------------------------------6 Chapter 2 Literature Review----------------------------------7 2-1 Introduction of the electrochemical reduction of CO2 (CO2ER)----------------------------------------------------------7 2-2 The categories of catalysts------------------------------9 2-3 Reaction mechanism of CO2ER-----------------------------13 2-3-1 Early developed reaction pathway of CO2ER---------------13 2-3-2 Reaction pathway of CO2ER to formic acid or carbon monoxide--------------------------------------------------------15 2-3-3 Electroactive species in CO2ER--------------------------17 2-4 Palladium nanoparticles used in electrochemical reduction of CO2----------------------------------------------------------23 2-4-1 Synthesis and dispersion of palladium nanoparticles-----23 2-4-2 Structure effect of palladium-based catalyst on CO2ER---27 Chapter 3 Chemicals, instruments and experimental methods-44 3-1 Chemicals-----------------------------------------------44 3-2 Electrochemical analysis--------------------------------46 3-2-1 Electrochemical system----------------------------------46 3-2-2 Introduction of polarization, overpotential and three-electrode system------------------------------------------------47 3-2-3 Linear sweep voltammetry (LSV)--------------------------50 3-2-4 Cyclic voltammetry (CV)---------------------------------51 3-2-5 Chronoamperometry (CA)----------------------------------52 3-2-6 Rotating ring disk electrode (RRDE) system--------------53 3-3 Reactors and preparation of catalyst and electrode------56 3-3-1 Reactor-------------------------------------------------56 3-3-2 Synthesis of Pd nanoparticles---------------------------57 3-3-3 Preparation of palladium/carbon black (Pd/XC72) used in chapter 4-------------------------------------------------------58 3-3-4 Preparation of Pd/XC72 used in chapter 5 and 6----------59 3-3-5 Reflux treatment----------------------------------------60 3-3-6 Preparation of working electrode------------------------61 3-4 Instrument----------------------------------------------62 3-4-1 Experiment apparatus------------------------------------62 3-4-2 Gas chromatograph---------------------------------------63 3-4-3 Transmission electron microscopy------------------------65 3-4-4 X-ray diffraction---------------------------------------66 3-4-5 X-ray photoelectron spectroscopy------------------------67 3-4-6 Ultraviolet–visible spectroscopy------------------------68 Chapter 4 Electrochemical behavior of the CO2 reduction reaction on palladium nanoparticles-----------------------------69 4-1 Motivation----------------------------------------------69 4-2 Cyclic voltammograms of Pd/XC72 with various lower potential limits------------------------------------------------71 4-3 Faradaic efficiency of the CO2ER on Pd/XC72-------------75 4-4 Cyclic voltammograms of Pd/XC72 with the addition of standard species------------------------------------------------77 4-5 Cyclic voltammograms of Pd/XC72 with various upper potential limits------------------------------------------------79 4-6 Conclusions---------------------------------------------82 Chapter 5 The relationships among hydrogen adsorption, CO stripping, and selectivity of CO2 reduction reaction on Pd nanoparticles.--------------------------------------------------85 5-1 Motivation----------------------------------------------85 5-2 Characteristics and performance of Pd/XC72 for the CO2ER------------------------------------------------------------------87 5-3 Relationships among H adsorption, CO adsorption and selectivity of CO2ER in the GDE system.-------------------------94 5-4 Rapid analysis of the product distribution of the CO2ER on Pd/XC72--------------------------------------------------------101 5-5 Relationships among H adsorption, CO adsorption, and selectivity of CO2ER in the RRDE system.-----------------------107 5-6 Possible reaction schemes of the CO2ER on Pd at high and low coverages of Hads.-----------------------------------------113 5-7 Conclusions--------------------------------------------116 Chapter 6 Electrochemical reduction of CO2 to formate on glacial acetic acid-refluxed Pd nanoparticles------------------118 6-1 Motivation---------------------------------------------118 6-2 Characteristic and performance of CO2ER on Pd/XC72, W-Pd/XC72 and A-Pd/XC72------------------------------------------120 6-3 CO self-poisoning on Pd/XC72, W-Pd/XC72 and A-Pd/XC72--128 6-3-1 Effect of refluxing------------------------------------128 6-3-2 Dependence of CO self-poisoning and F.E. of formate on applied potential----------------------------------------------133 6-4 Possible cause for the reduction of CO self-poisoning rate on A-Pd/XC72---------------------------------------------------136 6-4-1 Relative electrochemically active surface area---------136 6-4-2 UV-VIS spectra of Pd NPs dispersed in glacial acetic acid----------------------------------------------------------------143 6-4-3 Characteristic of Pd/XC72, W-Pd/XC72 and A-Pd/XC72-----147 6-5 Conclusion---------------------------------------------154 Chapter 7 Future Work------------------------------------156 Appendix A Identification of Pd/XC72 and reaction happened in preparation process in chapter 4.------------------------------158 A-1 Characteristic of Pd/XC72 used in chapter 4------------158 A-2 Reactions happened in the preparation process of Pd/XC72 in chapter 4---------------------------------------------------161 A-3 Electrochemical behaviors of 4-Pd/XC72.----------------163 A-4 Comparison of Pd/XC72 used in each chapter-------------165 Chapter 8 References-------------------------------------168

    [1] W. Wang, S. Wang, X. Ma, J. Gong, Recent advances in catalytic hydrogenation of carbon dioxide, Chem Soc Rev, 40 (2011) 3703-3727.
    [2] I. Shown, H.C. Hsu, Y.C. Chang, C.H. Lin, P.K. Roy, A. Ganguly, C.H. Wang, J.K. Chang, C.I. Wu, L.C. Chen, K.H. Chen, Highly efficient visible light photocatalytic reduction of CO2 to hydrocarbon fuels by Cu-nanoparticle decorated graphene oxide, Nano Lett, 14 (2014) 6097-6103.
    [3] Y. Li, S.H. Chan, Q. Sun, Heterogeneous catalytic conversion of CO2: a comprehensive theoretical review, Nanoscale, 7 (2015) 8663-8683.
    [4] Y. Liu, D. Liu, Study of bimetallic Cu–Ni/γ-Al2O3 catalysts for carbon dioxide hydrogenation, International Journal of Hydrogen Energy, 24 (1999) 351-354.
    [5] F.S. Stone, D. Waller, Cu–ZnO and Cu–ZnO/Al2O3 Catalysts for the Reverse Water-Gas Shift Reaction. The Effect of the Cu/Zn Ratio on Precursor Characteristics and on the Activity of the Derived Catalysts, Topics in catalysis, 22 (2003) 305-318.
    [6] G. Pekridis, K. Kalimeri, N. Kaklidis, E. Vakouftsi, E.F. Iliopoulou, C. Athanasiou, G.E. Marnellos, Study of the reverse water gas shift (RWGS) reaction over Pt in a solid oxide fuel cell (SOFC) operating under open and closed-circuit conditions, Catalysis Today, 127 (2007) 337-346.
    [7] W. Tu, Y. Zhou, Z. Zou, Photocatalytic conversion of CO(2) into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects, Adv Mater, 26 (2014) 4607-4626.
    [8] Z. Sun, N. Talreja, H. Tao, J. Texter, M. Muhler, J. Strunk, J. Chen, Catalysis of Carbon Dioxide Photoreduction on Nanosheets: Fundamentals and Challenges, Angew Chem Int Ed Engl, 57 (2018) 7610-7627.
    [9] Y.-P. Peng, Y.-T. Yeh, S.I. Shah, C.P. Huang, Concurrent photoelectrochemical reduction of CO2 and oxidation of methyl orange using nitrogen-doped TiO2, Applied Catalysis B: Environmental, 123-124 (2012) 414-423.
    [10] E.E. Benson, C.P. Kubiak, A.J. Sathrum, J.M. Smieja, Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels, Chem Soc Rev, 38 (2009) 89-99.
    [11] C. Costentin, M. Robert, J.M. Saveant, Catalysis of the electrochemical reduction of carbon dioxide, Chem Soc Rev, 42 (2013) 2423-2436.
    [12] J. Qiao, Y. Liu, F. Hong, J. Zhang, A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels, Chem Soc Rev, 43 (2014) 631-675.
    [13] W. Zhu, R. Michalsky, O. Metin, H. Lv, S. Guo, C.J. Wright, X. Sun, A.A. Peterson, S. Sun, Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO, J Am Chem Soc, 135 (2013) 16833-16836.
    [14] Q. Lu, J. Rosen, Y. Zhou, G.S. Hutchings, Y.C. Kimmel, J.G. Chen, F. Jiao, A selective and efficient electrocatalyst for carbon dioxide reduction, Nat Commun, 5 (2014) 3242.
    [15] D. Raciti, K.J. Livi, C. Wang, Highly Dense Cu Nanowires for Low-Overpotential CO2 Reduction, Nano Lett, 15 (2015) 6829-6835.
    [16] C.G. Vayenas, R.E. White, M.E. Gamboa-Aldeco, Modern Aspects of Electrochemistry, 2008.
    [17] D. Pletcher, The cathodic reduction of carbon dioxide—What can it realistically achieve? A mini review, Electrochemistry Communications, 61 (2015) 97-101.
    [18] H. Zhan, F. Li, C. Xin, N. Zhao, F. Xiao, W. Wei, Y. Sun, Performance of the La–Mn–Zn–Cu–O Based Perovskite Precursors for Methanol Synthesis from CO2 Hydrogenation, Catalysis Letters, 145 (2015) 1177-1185.
    [19] W. Paik, T. Andersen, H. Eyring, Kinetic studies of the electrolytic reduction of carbon dioxide on the mercury electrode, Electrochimica Acta, 14 (1969) 1217-1232.
    [20] Y. Hori, S. Suzuki, Electrolytic reduction of bicarbonate ion at a mercury electrode, Journal of The Electrochemical Society, 130 (1983) 2387-2390.
    [21] A. Salehi-Khojin, H.-R.M. Jhong, B.A. Rosen, W. Zhu, S. Ma, P.J.A. Kenis, R.I. Masel, Nanoparticle Silver Catalysts That Show Enhanced Activity for Carbon Dioxide Electrolysis, The Journal of Physical Chemistry C, 117 (2013) 1627-1632.
    [22] S. Zhang, P. Kang, T.J. Meyer, Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate, J Am Chem Soc, 136 (2014) 1734-1737.
    [23] Q. Wang, H. Dong, H. Yu, Development of rolling tin gas diffusion electrode for carbon dioxide electrochemical reduction to produce formate in aqueous electrolyte, Journal of Power Sources, 271 (2014) 278-284.
    [24] M. Liu, Y. Pang, B. Zhang, P. De Luna, O. Voznyy, J. Xu, X. Zheng, C.T. Dinh, F. Fan, C. Cao, F.P. de Arquer, T.S. Safaei, A. Mepham, A. Klinkova, E. Kumacheva, T. Filleter, D. Sinton, S.O. Kelley, E.H. Sargent, Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration, Nature, 537 (2016) 382-386.
    [25] P.K. Jiwanti, K. Natsui, K. Nakata, Y. Einaga, Selective production of methanol by the electrochemical reduction of CO2 on boron-doped diamond electrodes in aqueous ammonia solution, RSC Advances, 6 (2016) 102214-102217.
    [26] M. Irfan Malik, Z.O. Malaibari, M. Atieh, B. Abussaud, Electrochemical reduction of CO2 to methanol over MWCNTs impregnated with Cu2O, Chemical Engineering Science, 152 (2016) 468-477.
    [27] Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media, Electrochimica Acta, 39 (1994) 1833-1839.
    [28] M. Todoroki, K. Hara, A. Kudo, T. Sakata, Electrochemical reduction of high pressure CO2 at Pb, Hg and In electrodes in an aqueous KHCO3 solution, Journal of Electroanalytical Chemistry, 394 (1995) 199-203.
    [29] R.L. Machunda, H. Ju, J. Lee, Electrocatalytic reduction of CO2 gas at Sn based gas diffusion electrode, Current Applied Physics, 11 (2011) 986-988.
    [30] D. Kopljar, A. Inan, P. Vindayer, N. Wagner, E. Klemm, Electrochemical reduction of CO2 to formate at high current density using gas diffusion electrodes, Journal of Applied Electrochemistry, 44 (2014) 1107-1116.
    [31] H. Zhang, Y. Ma, F. Quan, J. Huang, F. Jia, L. Zhang, Selective electro-reduction of CO2 to formate on nanostructured Bi from reduction of BiOCl nanosheets, Electrochemistry Communications, 46 (2014) 63-66.
    [32] M. Miola, X.-M. Hu, R. Brandiele, E.T. Bjerglund, D.K. Grønseth, C. Durante, S.U. Pedersen, N. Lock, T. Skrydstrup, K. Daasbjerg, Ligand-free gold nanoparticles supported on mesoporous carbon as electrocatalysts for CO2 reduction, Journal of CO2 Utilization, 28 (2018) 50-58.
    [33] Y. Hori, A. Murata, R. Takahashi, Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 85 (1989) 2309-2326.
    [34] N. Hoshi, H. Ito, T. Suzuki, Y. Hori, CO2 Reduction on Rh single crystal electrodes and the structural effect, Journal of Electroanalytical Chemistry, 395 (1995) 309-312.
    [35] N. Hoshi, T. Suzuki, Y. Hori, Step density dependence of CO2 reduction rate on Pt(S)-[n(111) × (111)] single crystal electrodes, Electrochimica Acta, 41 (1996) 1647-1653.
    [36] C.W. Li, M.W. Kanan, CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films, J Am Chem Soc, 134 (2012) 7231-7234.
    [37] B.C. Marepally, C. Ampelli, C. Genovese, F. Tavella, L. Veyre, E.A. Quadrelli, S. Perathoner, G. Centi, Role of small Cu nanoparticles in the behaviour of nanocarbon-based electrodes for the electrocatalytic reduction of CO2, Journal of CO2 Utilization, 21 (2017) 534-542.
    [38] J. Wu, R.M. Yadav, M. Liu, P.P. Sharma, C.S. Tiwary, L. Ma, X. Zou, X.D. Zhou, B.I. Yakobson, J. Lou, P.M. Ajayan, Achieving Highly Efficient, Selective, and Stable CO2 Reduction on Nitrogen-Doped Carbon Nanotubes, ACS Nano, 9 (2015) 5364-5371.
    [39] B. Dembinska, W. Kiciński, A. Januszewska, A. Dobrzeniecka, P.J. Kulesza, Carbon Dioxide Electroreduction at Highly Porous Nitrogen and Sulfur Co-Doped Iron-Containing Heterogeneous Carbon Gel, Journal of The Electrochemical Society, 164 (2017) H484-H490.
    [40] A.A. Ensafi, H.A. Alinajafi, B. Rezaei, Pt-modified nitrogen doped reduced graphene oxide: A powerful electrocatalyst for direct CO2 reduction to methanol, Journal of Electroanalytical Chemistry, 783 (2016) 82-89.
    [41] Z. Han, C. Choi, H. Tao, Q. Fan, Y. Gao, S. Liu, A.W. Robertson, S. Hong, Y. Jung, Z. Sun, Tuning the Pd-catalyzed electroreduction of CO2 to CO with reduced overpotential, Catalysis Science & Technology, 8 (2018) 3894-3900.
    [42] J. Jordan, P. Smith, Free-radical intermediate in the electroreduction of carbon dioxide, Proceedings of the Chemical Society of London, (1960) 246-247.
    [43] A. Aylmer-Kelly, A. Bewick, P. Cantrill, A. Tuxford, Studies of electrochemically generated reaction intermediates using modulated specular reflectance spectroscopy, Faraday Discussions of the Chemical Society, 56 (1973) 96-107.
    [44] S. Sakaki, An ab initio MO/SD-CI study of model complexes of intermediates in electrochemical reduction of carbon dioxide catalyzed by NiCl2 (cyclam), Journal of the American Chemical Society, 114 (1992) 2055-2062.
    [45] A.A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J.K. Nørskov, How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels, Energy & Environmental Science, 3 (2010).
    [46] W.J. Durand, A.A. Peterson, F. Studt, F. Abild-Pedersen, J.K. Norskov, Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces, Surface Science, 605 (2011) 1354-1359.
    [47] J. Rosen, G.S. Hutchings, Q. Lu, S. Rivera, Y. Zhou, D.G. Vlachos, F. Jiao, Mechanistic Insights into the Electrochemical Reduction of CO2 to CO on Nanostructured Ag Surfaces, ACS Catalysis, 5 (2015) 4293-4299.
    [48] S. Zhu, B. Jiang, W.B. Cai, M. Shao, Direct Observation on Reaction Intermediates and the Role of Bicarbonate Anions in CO2 Electrochemical Reduction Reaction on Cu Surfaces, J Am Chem Soc, 139 (2017) 15664-15667.
    [49] S. Zhu, Q. Wang, X. Qin, M. Gu, R. Tao, B.P. Lee, L. Zhang, Y. Yao, T. Li, M. Shao, Tuning Structural and Compositional Effects in Pd-Au Nanowires for Highly Selective and Active CO2 Electrochemical Reduction Reaction, Advanced Energy Materials, 8 (2018).
    [50] M.F. Baruch, J.E. Pander, J.L. White, A.B. Bocarsly, Mechanistic Insights into the Reduction of CO2 on Tin Electrodes using in Situ ATR-IR Spectroscopy, ACS Catalysis, 5 (2015) 3148-3156.
    [51] J.E. Pander, M.F. Baruch, A.B. Bocarsly, Probing the Mechanism of Aqueous CO2 Reduction on Post-Transition-Metal Electrodes using ATR-IR Spectroelectrochemistry, ACS Catalysis, 6 (2016) 7824-7833.
    [52] J.S. Yoo, R. Christensen, T. Vegge, J.K. Norskov, F. Studt, Theoretical Insight into the Trends that Guide the Electrochemical Reduction of Carbon Dioxide to Formic Acid, ChemSusChem, 9 (2016) 358-363.
    [53] T.E. Teeter, P. Van Rysselberghe, Reduction of Carbon Dioxide on Mercury Cathodes, The Journal of Chemical Physics, 22 (1954) 759-760.
    [54] C.J. Stalder, S. Chao, M.S. Wrighton, Electrochemical reduction of aqueous bicarbonate to formate with high current efficiency near the thermodynamic potential at chemically derivatized electrodes, Journal of the American Chemical Society, 106 (1984) 3673-3675.
    [55] M. Spichiger-Ulmann, J. Augustynski, Electrochemical reduction of bicarbonate ions at a bright palladium cathode, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 81 (1985).
    [56] D.J. Schiffrin, Application of the photo-electrochemical effect to the study of the electrochemical properties of radicals: CO2 and CH3·, Faraday Discuss. Chem. Soc., 56 (1973) 75-95.
    [57] H. Yoshitake, T. Kikkawa, K.-i. Ota, Isotopic product distributions of CO2 electrochemical reduction on a D flowing-out Pd surface in protonic solution and reactivities of “subsurface” hydrogen, Journal of Electroanalytical Chemistry, 390 (1995) 91-97.
    [58] M. Vert, Y. Doi, K.-H. Hellwich, M. Hess, P. Hodge, P. Kubisa, M. Rinaudo, F. Schué, Terminology for biorelated polymers and applications (IUPAC Recommendations 2012), Pure and Applied Chemistry, 84 (2012) 377-410.
    [59] R. Narayanan, M.A. El-Sayed, Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability, J Phys Chem B, 109 (2005) 12663-12676.
    [60] R. Ferrando, J. Jellinek, R.L. Johnston, Nanoalloys: from theory to applications of alloy clusters and nanoparticles, Chem Rev, 108 (2008) 845-910.
    [61] S. Chandirasekar, G. Dharanivasan, J. Kasthuri, K. Kathiravan, N. Rajendiran, Facile Synthesis of Bile Salt Encapsulated Gold Nanoparticles and Its Use in Colorimetric Detection of DNA, The Journal of Physical Chemistry C, 115 (2011) 15266-15273.
    [62] J. Wu, P. Li, Y.T. Pan, S. Warren, X. Yin, H. Yang, Surface lattice-engineered bimetallic nanoparticles and their catalytic properties, Chem Soc Rev, 41 (2012) 8066-8074.
    [63] Y.T. Pan, X. Yin, K.S. Kwok, H. Yang, Higher-order nanostructures of two-dimensional palladium nanosheets for fast hydrogen sensing, Nano Lett, 14 (2014) 5953-5959.
    [64] Y.-T. Pan, J. Wu, X. Yin, H. Yang, In situ ETEM study of composition redistribution in Pt-Ni octahedral catalysts for electrochemical reduction of oxygen, AIChE Journal, 62 (2016) 399-407.
    [65] V. Mazumder, S. Sun, Oleylamine-mediated synthesis of Pd nanoparticles for catalytic formic acid oxidation, J Am Chem Soc, 131 (2009) 4588-4589.
    [66] Y. Zhao, J.A. Baeza, N. Koteswara Rao, L. Calvo, M.A. Gilarranz, Y.D. Li, L. Lefferts, Unsupported PVA- and PVP-stabilized Pd nanoparticles as catalyst for nitrite hydrogenation in aqueous phase, Journal of Catalysis, 318 (2014) 162-169.
    [67] M. Luo, W. Yao, C. Huang, Q. Wu, Q. Xu, Shape-controlled synthesis of Pd nanoparticles for effective photocatalytic hydrogen production, RSC Advances, 5 (2015) 40892-40898.
    [68] J. Cookson, The Preparation of Palladium Nanoparticles, Platinum Metals Review, 56 (2012) 83-98.
    [69] M.P. Pileni, The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals, Nat Mater, 2 (2003) 145-150.
    [70] C.-C. Yang, Y.-Y. Wang, C.-C. Wan, Synthesis and Characterization of PVP Stabilized Ag/Pd Nanoparticles and Its Potential as an Activator for Electroless Copper Deposition, Journal of The Electrochemical Society, 152 (2005) C96.
    [71] J. Xian, Q. Hua, Z. Jiang, Y. Ma, W. Huang, Size-dependent interaction of the poly(N-vinyl-2-pyrrolidone) capping ligand with Pd nanocrystals, Langmuir, 28 (2012) 6736-6741.
    [72] Z. Niu, Y. Li, Removal and Utilization of Capping Agents in Nanocatalysis, Chemistry of Materials, 26 (2013) 72-83.
    [73] S. Chen, K. Huang, J.A. Stearns, Alkanethiolate-Protected Palladium Nanoparticles, Chemistry of Materials, 12 (2000) 540-547.
    [74] K.R. Gopidas, J.K. Whitesell, M.A. Fox, Synthesis, Characterization, and Catalytic Applications of a Palladium-Nanoparticle-Cored Dendrimer, Nano Letters, 3 (2003) 1757-1760.
    [75] J. Lemo, K. Heuzé, D. Astruc, Synthesis and catalytic activity of DAB-dendrimer encapsulated Pd nanoparticles for the Suzuki coupling reaction, Inorganica Chimica Acta, 359 (2006) 4909-4911.
    [76] L. Wu, B.L. Li, Y.Y. Huang, H.F. Zhou, Y.M. He, Q.H. Fan, Phosphine dendrimer-stabilized palladium nanoparticles, a highly active and recyclable catalyst for the Suzuki-Miyaura reaction and hydrogenation, Org Lett, 8 (2006) 3605-3608.
    [77] Y. Yang, S. Ogasawara, G. Li, S. Kato, Dendrimer-stabilized Pd polymer composites: drastic suppression of Pd leaching and fine catalysis sustainability, Polymer Journal, 47 (2015) 340-347.
    [78] J. McCormick, A.M. Grunfeld, Y.N. Ertas, A.N. Biswas, K.L. Marsh, S. Wagner, S. Gloggler, L.S. Bouchard, Aqueous Ligand-Stabilized Palladium Nanoparticle Catalysts for Parahydrogen-Induced (13)C Hyperpolarization, Anal Chem, 89 (2017) 7190-7194.
    [79] S. Taguchi, A. Aramata, Surface-structure sensitive reduced CO2 formation on Pt single crystal electrodes in sulfuric acid solution, Electrochimica Acta, 39 (1994) 2533-2537.
    [80] N. Hoshi, T. Uchida, T. Mizumura, Y. Hori, Atomic arrangement dependence of reduction rates of carbon dioxide on iridium single crystal electrodes, Journal of Electroanalytical Chemistry, 381 (1995) 261-264.
    [81] N. Hoshi, M. Kato, Y. Hori, Electrochemical reduction of CO2 on single crystal electrodes of silver Ag (111), Ag (100) and Ag (110), Journal of Electroanalytical Chemistry, 440 (1997) 283-286.
    [82] N. Hoshi, S. Kawatani, M. Kudo, Y. Hori, Significant enhancement of the electrochemical reduction of CO2 at the kink sites on Pt(S)-[n(110)×(100)] and Pt(S)-[n(100)×(110)], Journal of Electroanalytical Chemistry, 467 (1999) 67-73.
    [83] N. Hoshi, M. Noma, T. Suzuki, Y. Hori, Structural effect on the rate of CO2 reduction on single crystal electrodes of palladium, Journal of Electroanalytical Chemistry, 421 (1997) 15-18.
    [84] A. Klinkova, P. De Luna, C.-T. Dinh, O. Voznyy, E.M. Larin, E. Kumacheva, E.H. Sargent, Rational Design of Efficient Palladium Catalysts for Electroreduction of Carbon Dioxide to Formate, ACS Catalysis, 6 (2016) 8115-8120.
    [85] D. Gao, H. Zhou, J. Wang, S. Miao, F. Yang, G. Wang, J. Wang, X. Bao, Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles, J Am Chem Soc, 137 (2015) 4288-4291.
    [86] R. Reske, H. Mistry, F. Behafarid, B. Roldan Cuenya, P. Strasser, Particle size effects in the catalytic electroreduction of CO(2) on Cu nanoparticles, J Am Chem Soc, 136 (2014) 6978-6986.
    [87] H. Mistry, R. Reske, Z. Zeng, Z.J. Zhao, J. Greeley, P. Strasser, B.R. Cuenya, Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles, J Am Chem Soc, 136 (2014) 16473-16476.
    [88] M. Rahaman, A. Dutta, P. Broekmann, Size-Dependent Activity of Palladium Nanoparticles: Efficient Conversion of CO2 into Formate at Low Overpotentials, ChemSusChem, 10 (2017) 1733-1741.
    [89] J.A. Rodriguez, D.W. Goodman, The nature of the metal-metal bond in bimetallic surfaces, Science, 257 (1992) 897-903.
    [90] E. Kampshoff, E. Hahn, K. Kern, Correlation between surface stress and the vibrational shift of CO chemisorbed on Cu surfaces, Phys Rev Lett, 73 (1994) 704-707.
    [91] M. Mavrikakis, B. Hammer, J.K. Nørskov, Effect of Strain on the Reactivity of Metal Surfaces, Physical Review Letters, 81 (1998) 2819-2822.
    [92] H. Huang, H. Jia, Z. Liu, P. Gao, J. Zhao, Z. Luo, J. Yang, J. Zeng, Understanding of Strain Effects in the Electrochemical Reduction of CO2: Using Pd Nanostructures as an Ideal Platform, Angew Chem Int Ed Engl, 56 (2017) 3594-3598.
    [93] K. Ohkawa, K. Hashimoto, A. Fujishima, Y. Noguchi, S. Nakayama, Electrochemical reduction of carbon dioxide on hydrogen-storing materials: Part 1. The effect of hydrogen absorption on the electrochemical behavior on palladium electrodes, Journal of Electroanalytical Chemistry, 345 (1993) 445-456.
    [94] K. Ohkawa, Y. Noguchi, S. Nakayama, K. Hashimoto, A. Fujishima, Electrochemical reduction of carbon dioxide on hydrogen-storing materials, Journal of Electroanalytical Chemistry, 367 (1994) 165-173.
    [95] X. Min, M.W. Kanan, Pd-catalyzed electrohydrogenation of carbon dioxide to formate: high mass activity at low overpotential and identification of the deactivation pathway, J Am Chem Soc, 137 (2015) 4701-4708.
    [96] D. Gao, H. Zhou, F. Cai, D. Wang, Y. Hu, B. Jiang, W.-B. Cai, X. Chen, R. Si, F. Yang, S. Miao, J. Wang, G. Wang, X. Bao, Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles, Nano Research, 10 (2017) 2181-2191.
    [97] V.S. Bagotsky, Fundamentals of electrochemistry, John Wiley & Sons, 2005.
    [98] C.-C. Hu, Fundamentals and Methods of Electrochemistry, Wu-Nan culture enterprise, Taiwan, 2002.
    [99] C.-C. Hu, T.-C. Wen, Voltammetric investigation of palladium oxides—I: their formation/reduction in NaOH, Electrochimica acta, 40 (1995) 495-503.
    [100] N. Hoshi, K. Kagaya, Y. Hori, Voltammograms of the single-crystal electrodes of palladium in aqueous sulfuric acid electrolyte: Pd(S)-[n(111)×(111)] and Pd(S)-[n(100)×(111)], Journal of Electroanalytical Chemistry, 485 (2000) 55-60.
    [101] A. Rose, S. Maniguet, R.J. Mathew, C. Slater, J. Yao, A.E. Russell, Hydride phase formation in carbon supported palladium nanoparticle electrodes investigated using in situ EXAFS and XRD, Physical Chemistry Chemical Physics, 5 (2003).
    [102] A. El-Aziz, L. Kibler, Influence of steps on the electrochemical oxidation of CO adlayers on Pd (111) and on Pd films electrodeposited onto Au (111), Journal of Electroanalytical Chemistry, 534 (2002) 107-114.
    [103] M. Hara, U. Linke, T. Wandlowski, Preparation and electrochemical characterization of palladium single crystal electrodes in 0.1M H2SO4 and HClO4, Electrochimica Acta, 52 (2007) 5733-5748.
    [104] A. Januszewska, R. Jurczakowski, P.J. Kulesza, CO(2) electroreduction at bare and Cu-decorated Pd pseudomorphic layers: catalyst tuning by controlled and indirect supporting onto Au(111), Langmuir, 30 (2014) 14314-14321.
    [105] C.W. Lee, N.H. Cho, K.T. Nam, Y.J. Hwang, B.K. Min, Cyclic two-step electrolysis for stable electrochemical conversion of carbon dioxide to formate, Nat Commun, 10 (2019) 3919.
    [106] D. Gao, H. Zhou, F. Cai, J. Wang, G. Wang, X. Bao, Pd-Containing Nanostructures for Electrochemical CO2 Reduction Reaction, ACS Catalysis, 8 (2018) 1510-1519.
    [107] B. Hammer, Y. Morikawa, J.K. Norskov, CO chemisorption at metal surfaces and overlayers, Phys Rev Lett, 76 (1996) 2141-2144.
    [108] F.A. Lewis, The palladium/hydrogen system, (1967).
    [109] M. Grdeń, M. Łukaszewski, G. Jerkiewicz, A. Czerwiński, Electrochemical behaviour of palladium electrode: Oxidation, electrodissolution and ionic adsorption, Electrochimica Acta, 53 (2008) 7583-7598.
    [110] S. Pérez-Rodríguez, N. Rillo, M.J. Lázaro, E. Pastor, Pd catalysts supported onto nanostructured carbon materials for CO2 valorization by electrochemical reduction, Applied Catalysis B: Environmental, 163 (2015) 83-95.
    [111] C. Cachet-Vivier, S. Bastide, M. Laurent, C. Zlotea, M. Latroche, Hydrogen sorption properties of Pd nanoparticles dispersed on graphitic carbon studied with a cavity microelectrode, Electrochimica Acta, 83 (2012) 133-139.
    [112] S. Bastide, C. Zlotea, M. Laurent, M. Latroche, C. Cachet-Vivier, Direct assessment from cyclic voltammetry of size effect on the hydrogen sorption properties of Pd nanoparticle/carbon hybrids, Journal of Electroanalytical Chemistry, 706 (2013) 33-39.
    [113] R.-H. Guo, C.-F. Liu, T.-C. Wei, C.-C. Hu, Electrochemical behavior of CO2 reduction on palladium nanoparticles: Dependence of adsorbed CO on electrode potential, Electrochemistry Communications, 80 (2017) 24-28.
    [114] F. Zhang, A.C. Co, Rapid Product Analysis for the Electroreduction of CO2 on Heterogeneous and Homogeneous Catalysts Using a Rotating Ring Detector, Journal of The Electrochemical Society, 167 (2020).
    [115] P. Strasser, M. Lübke, F. Raspel, M. Eiswirth, G. Ertl, Oscillatory instabilities during formic acid oxidation on Pt(100), Pt(110) and Pt(111) under potentiostatic control. I. Experimental, The Journal of Chemical Physics, 107 (1997) 979-990.
    [116] J. Lee, J. Christoph, T. Noh, M. Eiswirth, G. Ertl, Edge effects in an electrochemical reaction: HCOOH oxidation on a Pt ribbon, J Chem Phys, 126 (2007) 144702.
    [117] K. Jiang, H.X. Zhang, S. Zou, W.B. Cai, Electrocatalysis of formic acid on palladium and platinum surfaces: from fundamental mechanisms to fuel cell applications, Phys Chem Chem Phys, 16 (2014) 20360-20376.
    [118] M.J. Boyd, A.A. Latimer, C.F. Dickens, A.C. Nielander, C. Hahn, J.K. Nørskov, D.C. Higgins, T.F. Jaramillo, Electro-Oxidation of Methane on Platinum under Ambient Conditions, ACS Catalysis, 9 (2019) 7578-7587.
    [119] C.-C. Hu, K.-Y. Liu, Voltammetric investigation of platinum oxides. I. Effects of ageing on their formation/reduction behavior as well as catalytic activities for methanol oxidation, Electrochimica Acta, 44 (1999) 2727-2738.
    [120] M.C. Santos, L.O.S. Bulhões, Electrogravimetric investigation of formaldehyde oxidation at Pt electrodes in acidic media, Electrochimica Acta, 49 (2004) 1893-1901.
    [121] P. Bommersbach, M. Mohamedi, D. Guay, Electro-oxidation of Ethanol at Sputter-Deposited Platinum–Tin Catalysts, Journal of The Electrochemical Society, 154 (2007).
    [122] Y.F. Huang, P.J. Kooyman, M.T. Koper, Intermediate stages of electrochemical oxidation of single-crystalline platinum revealed by in situ Raman spectroscopy, Nat Commun, 7 (2016) 12440.
    [123] B. Jiang, X.G. Zhang, K. Jiang, D.Y. Wu, W.B. Cai, Boosting Formate Production in Electrocatalytic CO2 Reduction over Wide Potential Window on Pd Surfaces, J Am Chem Soc, 140 (2018) 2880-2889.
    [124] W. Zhu, S. Kattel, F. Jiao, J.G. Chen, Shape-Controlled CO2 Electrochemical Reduction on Nanosized Pd Hydride Cubes and Octahedra, Advanced Energy Materials, 9 (2019).
    [125] C. Rice, S. Ha, R.I. Masel, P. Waszczuk, A. Wieckowski, T. Barnard, Direct formic acid fuel cells, Journal of Power Sources, 111 (2002) 83-89.
    [126] X. Yu, P.G. Pickup, Recent advances in direct formic acid fuel cells (DFAFC), Journal of Power Sources, 182 (2008) 124-132.
    [127] K. Ohkawa, Y. Noguchi, S. Nakayama, K. Hashimoto, A. Fujishima, Electrochemical reduction of carbon dioxide on hydrogen-storing materials: Part 4. Electrochemical behavior of the Pd electrode in aqueous and nonaqueous electrolyte, Journal of Electroanalytical Chemistry, 369 (1994) 247-250.
    [128] R. Kortlever, I. Peters, S. Koper, M.T.M. Koper, Electrochemical CO2 Reduction to Formic Acid at Low Overpotential and with High Faradaic Efficiency on Carbon-Supported Bimetallic Pd–Pt Nanoparticles, ACS Catalysis, 5 (2015) 3916-3923.
    [129] F. Zhou, H. Li, M. Fournier, D.R. MacFarlane, Electrocatalytic CO2 Reduction to Formate at Low Overpotentials on Electrodeposited Pd Films: Stabilized Performance by Suppression of CO Formation, ChemSusChem, 10 (2017) 1509-1516.
    [130] F. Cai, D. Gao, R. Si, Y. Ye, T. He, S. Miao, G. Wang, X. Bao, Effect of metal deposition sequence in carbon-supported Pd–Pt catalysts on activity towards CO2 electroreduction to formate, Electrochemistry Communications, 76 (2017) 1-5.
    [131] S. Chatterjee, C. Griego, J.L. Hart, Y. Li, M.L. Taheri, J. Keith, J.D. Snyder, Free Standing Nanoporous Palladium Alloys as CO Poisoning Tolerant Electrocatalysts for the Electrochemical Reduction of CO2 to Formate, ACS Catalysis, 9 (2019) 5290-5301.
    [132] Y. Wang, J. Yuan, L. Wang, C. Hao, Electrochemical Study on Palladium Acetate +p-Benzoquinone + Molybdovanadophosphate System by Cyclic Voltammetry, Journal of Chemical & Engineering Data, 55 (2010) 2233-2237.
    [133] I.P. Stolyarov, L.I. Demina, N.V. Cherkashina, Preparative synthesis of palladium(II) acetate: Reactions, intermediates, and by-products, Russian Journal of Inorganic Chemistry, 56 (2011) 1532-1537.
    [134] A. Maleckis, J.W. Kampf, M.S. Sanford, A detailed study of acetate-assisted C-H activation at palladium(IV) centers, J Am Chem Soc, 135 (2013) 6618-6625.
    [135] W.A. Carole, T.J. Colacot, Understanding Palladium Acetate from a User Perspective, Chemistry, 22 (2016) 7686-7695.
    [136] M. Larrosa, B. Zonker, J. Volkmann, F. Wech, C. Logemann, H. Hausmann, R. Hrdina, Directed C-H Bond Oxidation of Bridged Cycloalkanes Catalyzed by Palladium(II) Acetate, Chemistry, 24 (2018) 6269-6276.
    [137] W. Li, S. Ivanov, S. Mozaffari, N. Shanaiah, A.M. Karim, Palladium Acetate Trimer: Understanding Its Ligand-Induced Dissociation Thermochemistry Using Isothermal Titration Calorimetry, X-ray Absorption Fine Structure, and 31P Nuclear Magnetic Resonance, Organometallics, 38 (2018) 451-460.
    [138] I.V. Yudanov, R. Sahnoun, K.M. Neyman, N. Rösch, Metal nanoparticles as models of single crystal surfaces and supported catalysts: Density functional study of size effects for CO/Pd(111), The Journal of Chemical Physics, 117 (2002) 9887-9896.
    [139] R. Chen, M. Cao, W. Yang, H. Wang, S. Zhang, H. Li, R. Cao, Ultra-small Pd nanoparticles derived from a supramolecular assembly for enhanced electrochemical reduction of CO2 to CO, Chem Commun (Camb), 55 (2019) 9805-9808.
    [140] M. Bowker, C. Morgan, J. Couves, Acetic acid adsorption and decomposition on Pd(110), Surface Science, 555 (2004) 145-156.
    [141] Z. Li, W.T. Tysoe, The adsorption of acetic acid on clean and oxygen-covered Au/Pd(100) alloy surfaces, Surface Science, 606 (2012) 1934-1941.
    [142] L.M. Esteves, M.H. Brijaldo, F.B. Passos, Decomposition of acetic acid for hydrogen production over Pd/Al2O3 and Pd/TiO2 : Influence of metal precursor, Journal of Molecular Catalysis A: Chemical, 422 (2016) 275-288.
    [143] R. Mani, V. Mahadevan, M. Srinivasan, Characterization of a Polymer-Bound Palladium Acetate Catalyst and Studies on the Selective Hydrogenation of Dienes and Alkynes, Journal of Macromolecular Science, Part A, 30 (1993) 557-569.
    [144] J.P. Mathew, M. Srinivasan, Photoelectron spectroscopy (XPS) studies on some palladium catalysts, European Polymer Journal, 31 (1995) 835-839.
    [145] S.D. Kirik, R.F. Mulagaleev, A.I. Blokhin, [Pd(CH3COO)2]n from X-ray powder diffraction data, Acta Crystallogr C, 60 (2004) m449-450.

    QR CODE