研究生: |
王鼎 Wang, Ding |
---|---|
論文名稱: |
Identification of an intermediate filament TAG-63 affecting fast axonal transport in Caenorhabditis elegans 初探中間絲蛋白 TAG-63 對於秀麗隱桿線蟲快速軸突運輸之影響 |
指導教授: |
王歐力
Wagner, Oliver |
口試委員: |
張慧雲
Chang, Hui-Yun 蔡欣祐 Tsai, Hsin-Yue |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 99 |
中文關鍵詞: | 秀麗隱桿線蟲 、中間絲蛋白 、TAG-63 、基因表現模式 、快速軸突運輸 、UNC-104/KIF1A 、SNB-1/VAMP1 、tag-63(ok471) |
外文關鍵詞: | Caenorhabditis elegans, intermediate filament, TAG-63, gene expression pattern, fast axonal transport, UNC-104/KIF1A, SNB-1/VAMP1, tag-63(ok471) |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
多種神經性中間絲蛋白 (neuronal intermediate filament) 之缺陷已知與神經系統疾病有關,例如帕金森氏症 (PD) 與肌萎縮性脊髓側索硬化症 (ALS)。科學家時常應用模式生物,例如斑馬魚、果蠅、與線蟲,來探討人類疾病之病理。然而,在秀麗隱桿線蟲 (Caenorhabditis elegans) 中是否存在神經絲蛋白 (neurofilament) 的同源基因 (homolog) 則尚未明朗。本研究參酌生物資訊工具 WormBase BLASTP 對於人類基因 neurofilament heavy polypeptide (nefh) 之同源性演算結果,旨在探討相應之線蟲同源基因 temporarily assigned gene-63 (tag-63)。我們建立了轉錄融合 (transcriptional reporter) 的 tag-63 轉殖蟲株,發現 tag-63 的基因表現模式與泛神經元蛋白標記 UNC-104 有部分重合。此外,我們定序及遠交 (outcrossing) 缺失突變蟲株 VC275 tag-63(ok471),將其分別配種 (crossing) 於轉譯融合 (translational reporter) 的 UNC-104/KIF1A (kinesin-3 motors) 與 SNB-1/VAMP1 (synaptobrevin-1 synaptic vesicles) 轉殖蟲株。先藉由基因分型 PCR 與西方墨點法來確認配種成功後,再藉由活體線蟲感覺神經元 ALM 之縮時攝影,來量測 tag-63(ok471) 對於 motor UNC-104 與相應的cargo SNB-1 快速軸突運輸 (fast axonal transport) 之影響。分析發現,tag-63(ok471) 顯著地藉由差異性調控 UNC-104 與 SNB-1 的運輸參數,導致活化逆行 (retrograde) 運輸機制且抑制順行 (anterograde) 運輸機制。進一步分析發現,TAG-63 突變造成 UNC-104 與 SNB-1 在順行運輸而非逆行運輸中形成了相似的運輸動態 (motility scheme)。基於以上實驗結果,我們提出嶄新的假說:神經絲蛋白同源基因 TAG-63 之所以影響秀麗隱桿線蟲快速軸突運輸,可能是藉由 TAG-63 與運輸複合體 (motor-cargo complex) 的暫時交互作用所致。
Various neuronal intermediate filament defects are associated with neurological disorders, such as Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). To study how human diseases develop, scientists frequently employ model organisms, such as zebrafish, fruit flies, and worms. However, whether a neurofilament homolog exists in the nematode Caenorhabditis elegans remains unclear. In this study, we investigated a candidate gene, temporarily assigned gene-63 (tag-63), which we hypothesized to be a homolog to human neurofilament heavy polypeptide (nefh) according to WormBase BLASTP. We established a stable transgenic worm line expressing the tag-63 transcriptional reporter and found that tag-63 expresses in some neurons showing partial co-occurrence with the pan-neuronal reporter UNC-104. Additionally, we sequenced and outcrossed the deletion mutant strain VC275 tag-63(ok471) and separately crossed it with the translational reporters UNC-104/KIF1A (kinesin-3 motors) and SNB-1/VAMP1 (synaptobrevin-1 synaptic vesicles). We verified the crossing through genotyping PCR and Western blotting and examined anterograde motor UNC-104 and corresponding cargo SNB-1 fast axonal transport dynamics in the mechanosensory neuron ALM by using time-lapse imaging in live worms. Intriguingly, we found that worms carrying the TAG-63 mutation significantly activate the retrograde machinery and deactivate the anterograde machinery of UNC-104 and SNB-1 by acting on differential transport parameters. Moreover, the TAG-63 mutation causes similar motility schemes between UNC-104 and SNB-1 in anterograde but not retrograde transport directions. Based on these results, we propose a novel model that neurofilament homolog TAG-63 affecting fast axonal transport in C. elegans via transient interactions between TAG-63 and the motor-cargo complex.
- Ahringer, J. 2006. Reverse genetics. WormBook:1-43.
- Alami, N.H., P. Jung, and A. Brown. 2009. Myosin Va increases the efficiency of neu-rofilament transport by decreasing the duration of long-term pauses. J. Neurosci. 29:6625-6634.
- Altun, Z.F., and D.H. Hall. 2005. Handbook of C. elegans Anatomy - WormAtlas.
- Aranda-Espinoza, H., P. Carl, J.F. Leterrier, P. Janmey, and D.E. Discher. 2002. Do-main unfolding in neurofilament sidearms: effects of phosphorylation and ATP. FEBS Lett. 531:397-401.
- Berkowitz, L.A., A.L. Knight, G.A. Caldwell, and K.A. Caldwell. 2008. Generation of stable transgenic C. elegans using microinjection. Journal of visualized experi-ments : JoVE.
- Bhabha, G., G.T. Johnson, C.M. Schroeder, and R.D. Vale. 2016. How Dynein Moves Along Microtubules. Trends Biochem. Sci. 41:94-105.
- Boulin, T., J.F. Etchberger, and O. Hobert. 2006. Reporter gene fusions. Worm-Book:1-23.
- Britt, D.J., G.G. Farias, C.M. Guardia, and J.S. Bonifacino. 2016. Mechanisms of Po-larized Organelle Distribution in Neurons. Front. Cell. Neurosci. 10:88.
- Camacho, C., G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer, and T.L. Madden. 2009. BLAST+: architecture and applications. BMC Bioinformatics. 10:421.
- Carberry, K., T. Wiesenfahrt, R. Windoffer, O. Bossinger, and R.E. Leube. 2009. In-termediate filaments in Caenorhabditis elegans. Cell Motil. Cytoskeleton. 66:852-864.
- Cardona, A., S. Saalfeld, J. Schindelin, I. Arganda-Carreras, S. Preibisch, M. Longair, P. Tomancak, V. Hartenstein, and R.J. Douglas. 2012. TrakEM2 software for neu-ral circuit reconstruction. PLoS One. 7:e38011.
- Chang, C., Y.W. Hsieh, B.J. Lesch, C.I. Bargmann, and C.F. Chuang. 2011. Microtu-bule-based localization of a synaptic calcium-signaling complex is required for left-right neuronal asymmetry in C. elegans. Development. 138:3509-3518.
- Coch, R.A., and R.E. Leube. 2016. Intermediate Filaments and Polarization in the In-testinal Epithelium. Cells. 5.
- Consortium. 2012. Large-scale screening for targeted knockouts in the Caenorhabditis elegans genome. G3 (Bethesda, Md.). 2:1415-1425.
- Dubey, M., P. Chaudhury, H. Kabiru, and T.B. Shea. 2008. Tau inhibits anterograde axonal transport and perturbs stability in growing axonal neurites in part by dis-placing kinesin cargo: neurofilaments attenuate tau-mediated neurite instability. Cell Motil. Cytoskeleton. 65:89-99.
- Duerr, J.S. 2006. Immunohistochemistry. WormBook:1-61.
- Edwards, S.L., R.M. Yorks, L.M. Morrison, C.M. Hoover, and K.G. Miller. 2015. Synapse-Assembly Proteins Maintain Synaptic Vesicle Cluster Stability and Regulate Synaptic Vesicle Transport in Caenorhabditis elegans. Genetics. 201:91-116.
- Encalada, S.E., and L.S. Goldstein. 2014. Biophysical challenges to axonal transport: motor-cargo deficiencies and neurodegeneration. Annual review of biophysics. 43:141-169.
- Evans, T.C. 2006. Transformation and microinjection. WormBook:1-15.
- Faul, F., E. Erdfelder, A. Buchner, and A.G. Lang. 2009. Statistical power analyses us-ing G*Power 3.1: tests for correlation and regression analyses. Behav. Res. Methods. 41:1149-1160.
- Fay, D.S. 2013. Classical genetic methods. WormBook:1-58.
- Fukuhara, N., and T. Kawabata. 2008. HOMCOS: a server to predict interacting pro-tein pairs and interacting sites by homology modeling of complex structures. Nucleic Acids Res. 36:W185-189.
- Gallagher, S.R. 2008. SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE). In Cur-rent Protocols Essential Laboratory Techniques. John Wiley & Sons, Inc.
- Gentil, B.J., S. Minotti, M. Beange, R.H. Baloh, J.P. Julien, and H.D. Durham. 2012. Normal role of the low-molecular-weight neurofilament protein in mitochondrial dynamics and disruption in Charcot-Marie-Tooth disease. FASEB J. 26:1194-1203.
- Gentil, B.J., M. Tibshirani, and H.D. Durham. 2015. Neurofilament dynamics and in-volvement in neurological disorders. Cell Tissue Res. 360:609-620.
- Gondre-Lewis, M.C., J.J. Park, and Y.P. Loh. 2012. Cellular mechanisms for the bio-genesis and transport of synaptic and dense-core vesicles. Int. Rev. Cell Mol. Bi-ol. 299:27-115.
- Hall, D.H., and E.M. Hedgecock. 1991. Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans. Cell. 65:837-847.
- Hammond, J.W., D. Cai, T.L. Blasius, Z. Li, Y. Jiang, G.T. Jih, E. Meyhofer, and K.J. Verhey. 2009. Mammalian Kinesin-3 motors are dimeric in vivo and move by processive motility upon release of autoinhibition. PLoS Biol. 7:e72.
- Hata, Y., C.A. Slaughter, and T.C. Sudhof. 1993. Synaptic vesicle fusion complex con-tains unc-18 homologue bound to syntaxin. Nature. 366:347-351.
- Hayes, A.F., and L. Cai. 2007. Further evaluating the conditional decision rule for comparing two independent means. Br. J. Math. Stat. Psychol. 60:217-244.
- Hirokawa, N. 1982. Cross-linker system between neurofilaments, microtubules, and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method. J. Cell Biol. 94:129-142.
- Hirokawa, N., R. Nitta, and Y. Okada. 2009. The mechanisms of kinesin motor motility: lessons from the monomeric motor KIF1A. Nat. Rev. Mol. Cell Biol. 10:877-884.
- Hirokawa, N., S. Niwa, and Y. Tanaka. 2010. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron. 68:610-638.
- Howe, K.L., B.J. Bolt, S. Cain, J. Chan, W.J. Chen, P. Davis, J. Done, T. Down, S. Gao, C. Grove, T.W. Harris, R. Kishore, R. Lee, J. Lomax, Y. Li, H.M. Muller, C. Nakamura, P. Nuin, M. Paulini, D. Raciti, G. Schindelman, E. Stanley, M.A. Tuli, K. Van Auken, D. Wang, X. Wang, G. Williams, A. Wright, K. Yook, M. Berriman, P. Kersey, T. Schedl, L. Stein, and P.W. Sternberg. 2016. WormBase 2016: expanding to enable helminth genomic research. Nucleic Acids Res. 44:D774-780.
- Inglis, P.N., G. Ou, M.R. Leroux, and J.M. Scholey. 2007. The sensory cilia of Caeno-rhabditis elegans. WormBook:1-22.
- Jung, C., S. Lee, D. Ortiz, Q. Zhu, J.P. Julien, and T.B. Shea. 2005. The high and mid-dle molecular weight neurofilament subunits regulate the association of neuro-filaments with kinesin: inhibition by phosphorylation of the high molecular weight subunit. Brain Res. Mol. Brain Res. 141:151-155.
- Kapitein, L.C., and C.C. Hoogenraad. 2010. Which way to go? Cytoskeletal organiza-tion and polarized transport in neurons. Mol. Cell. Neurosci. 46:9-20.
- Karabinos, A., E. Schulze, J. Schunemann, D.A. Parry, and K. Weber. 2003. In vivo and in vitro evidence that the four essential intermediate filament (IF) proteins A1, A2, A3 and B1 of the nematode Caenorhabditis elegans form an obligate heteropolymeric IF system. J. Mol. Biol. 333:307-319.
- Karady, I., A. Frumkin, S. Dror, N. Shemesh, N. Shai, and A. Ben-Zvi. 2013. Using Caenorhabditis elegans as a model system to study protein homeostasis in a multicellular organism. Journal of visualized experiments : JoVE:e50840.
- Kevenaar, J.T., and C.C. Hoogenraad. 2015. The axonal cytoskeleton: from organiza-tion to function. Front. Mol. Neurosci. 8:44.
- Kosugi, S., M. Hasebe, M. Tomita, and H. Yanagawa. 2009. Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc. Natl. Acad. Sci. U. S. A. 106:10171-10176.
- La Spada, A., and L.P. Ranum. 2010. Molecular genetic advances in neurological dis-ease: special review issue. Hum. Mol. Genet. 19:R1-3.
- Lakadamyali, M. 2014. Navigating the cell: how motors overcome roadblocks and traf-fic jams to efficiently transport cargo. Phys. Chem. Chem. Phys. 16:5907-5916.
- Laser-Azogui, A., M. Kornreich, E. Malka-Gibor, and R. Beck. 2015. Neurofilament assembly and function during neuronal development. Curr. Opin. Cell Biol. 32:92-101.
- Lepinoux-Chambaud, C., and J. Eyer. 2013. Review on intermediate filaments of the nervous system and their pathological alterations. Histochem. Cell Biol. 140:13-22.
- Limpert, E., W. Stahel, and M. Abbt. 2001. Log-normal Distributions across the Sci-ences: Keys and Clues. Bioscience. 51:341-352.
- Lund, M., and B. Jonsson. 2013. Charge regulation in biomolecular solution. Q. Rev. Biophys. 46:265-281.
- Maday, S., A.E. Twelvetrees, A.J. Moughamian, and E.L. Holzbaur. 2014. Axonal transport: cargo-specific mechanisms of motility and regulation. Neuron. 84:292-309.
- Maeder, C.I., A. San-Miguel, E.Y. Wu, H. Lu, and K. Shen. 2014a. In vivo neu-ron-wide analysis of synaptic vesicle precursor trafficking. Traffic (Copenhagen, Denmark). 15:273-291.
- Maeder, C.I., K. Shen, and C.C. Hoogenraad. 2014b. Axon and dendritic trafficking. Curr. Opin. Neurobiol. 27:165-170.
- Marchler-Bauer, A., M.K. Derbyshire, N.R. Gonzales, S. Lu, F. Chitsaz, L.Y. Geer, R.C. Geer, J. He, M. Gwadz, D.I. Hurwitz, C.J. Lanczycki, F. Lu, G.H. Marchler, J.S. Song, N. Thanki, Z. Wang, R.A. Yamashita, D. Zhang, C. Zheng, and S.H. Bryant. 2015. CDD: NCBI's conserved domain database. Nucleic Ac-ids Res. 43:D222-226.
- Matveeva, E.A., L.S. Venkova, I.S. Chernoivanenko, and A.A. Minin. 2015. Vimentin is involved in regulation of mitochondrial motility and membrane potential by Rac1. Biol Open. 4:1290-1297.
- Mellman, I., and S.D. Emr. 2013. A Nobel Prize for membrane traffic: Vesicles find their journey's end. J. Cell Biol. 203:559-561.
- Millecamps, S., and J.P. Julien. 2013. Axonal transport deficits and neurodegenerative diseases. Nat. Rev. Neurosci. 14:161-176.
- Motulsky, H.J., and R.E. Brown. 2006. Detecting outliers when fitting data with non-linear regression - a new method based on robust nonlinear regression and the false discovery rate. BMC Bioinformatics. 7:123.
- Ni, D., P. Xu, D. Sabanayagam, and S.R. Gallagher. 2008. Protein Blotting: Immunob-lotting. In Current Protocols Essential Laboratory Techniques. John Wiley & Sons, Inc.
- Ohsawa, K., H. Ohshima, and S. Ohki. 1981. Surface potential and surface charge density of the cerebral-cortex synaptic vesicle and stability of vesicle suspension. Biochim. Biophys. Acta. 648:206-214.
- Okonechnikov, K., O. Golosova, and M. Fursov. 2012. Unipro UGENE: a unified bi-oinformatics toolkit. Bioinformatics. 28:1166-1167.
- Perlson, E., S. Maday, M.M. Fu, A.J. Moughamian, and E.L. Holzbaur. 2010. Retro-grade axonal transport: pathways to cell death? Trends Neurosci. 33:335-344.
- Perrot, R., and J.P. Julien. 2009. Real-time imaging reveals defects of fast axonal transport induced by disorganization of intermediate filaments. FASEB J. 23:3213-3225.
- Rashid, D.J., J. Bononi, B.P. Tripet, R.S. Hodges, and D.W. Pierce. 2005. Monomeric and dimeric states exhibited by the kinesin-related motor protein KIF1A. J. Pept. Res. 65:538-549.
- Schindelin, J., I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.Y. Tinevez, D.J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona. 2012. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 9:676-682.
- Shah, J.V., L.A. Flanagan, P.A. Janmey, and J.F. Leterrier. 2000. Bidirectional translo-cation of neurofilaments along microtubules mediated in part by dynein/dynactin. Mol. Biol. Cell. 11:3495-3508.
- Sievers, F., and D.G. Higgins. 2014. Clustal Omega, accurate alignment of very large numbers of sequences. Methods Mol. Biol. 1079:105-116.
- Soler-Martin, C., P. Boadas-Vaello, E. Verdu, N. Garcia, and J. Llorens. 2014. Chronic proximal axonopathy in rats is associated with long-standing neurofilament de-pletion in neuromuscular junctions and behavioral deficits. J. Neuropathol. Exp. Neurol. 73:568-579.
- Soppina, V., S.R. Norris, A.S. Dizaji, M. Kortus, S. Veatch, M. Peckham, and K.J. Verhey. 2014. Dimerization of mammalian kinesin-3 motors results in super-processive motion. Proc. Natl. Acad. Sci. U. S. A. 111:5562-5567.
- Spencer, W.C., G. Zeller, J.D. Watson, S.R. Henz, K.L. Watkins, R.D. McWhirter, S. Petersen, V.T. Sreedharan, C. Widmer, J. Jo, V. Reinke, L. Petrella, S. Strome, S.E. Von Stetina, M. Katz, S. Shaham, G. Ratsch, and D.M. Miller, 3rd. 2011. A spatial and temporal map of C. elegans gene expression. Genome Res. 21:325-341.
- Stiernagle, T. 2006. Maintenance of C. elegans. WormBook:1-11.
- Szigeti, B., P. Gleeson, M. Vella, S. Khayrulin, A. Palyanov, J. Hokanson, M. Currie, M. Cantarelli, G. Idili, and S. Larson. 2014. OpenWorm: an open-science ap-proach to modeling Caenorhabditis elegans. Front. Comput. Neurosci. 8:137.
- Szklarczyk, D., A. Franceschini, S. Wyder, K. Forslund, D. Heller, J. Huerta-Cepas, M. Simonovic, A. Roth, A. Santos, K.P. Tsafou, M. Kuhn, P. Bork, L.J. Jensen, and C. von Mering. 2015. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43:D447-452.
- Tanaka, Y., S. Niwa, M. Dong, A. Farkhondeh, L. Wang, R. Zhou, and N. Hirokawa. 2016. The Molecular Motor KIF1A Transports the TrkA Neurotrophin Receptor and Is Essential for Sensory Neuron Survival and Function. Neuron. 90:1215-1229.
- Thierry-Mieg, D., and J. Thierry-Mieg. 2006. AceView: a comprehensive cDNA-supported gene and transcripts annotation. Genome Biol. 7 Suppl 1:S12.11-14.
- Thomson, D.M. 2008. Basics of Statistical Analysis. In Current Protocols Essential Laboratory Techniques. John Wiley & Sons, Inc.
- Tien, N.W., G.H. Wu, C.C. Hsu, C.Y. Chang, and O.I. Wagner. 2011. Tau/PTL-1 asso-ciates with kinesin-3 KIF1A/UNC-104 and affects the motor's motility charac-teristics in C. elegans neurons. Neurobiol. Dis. 43:495-506.
- Tomishige, M., D.R. Klopfenstein, and R.D. Vale. 2002. Conversion of Unc104/KIF1A kinesin into a processive motor after dimerization. Science. 297:2263-2267.
- Twelvetrees, A., A.G. Hendricks, and E.L. Holzbaur. 2012. SnapShot: axonal transport. Cell. 149:950-950.e951.
- Vannucchi, M.G., P. Midrio, C. Zardo, and M.S. Faussone-Pellegrini. 2004. Neurofil-ament formation and synaptic activity are delayed in the myenteric neurons of the rat fetus with gastroschisis. Neurosci. Lett. 364:81-85.
- Wagner, O.I., J. Ascano, M. Tokito, J.F. Leterrier, P.A. Janmey, and E.L. Holzbaur. 2004. The interaction of neurofilaments with the microtubule motor cytoplasmic dynein. Mol. Biol. Cell. 15:5092-5100.
- Wagner, O.I., A. Esposito, B. Kohler, C.W. Chen, C.P. Shen, G.H. Wu, E. Butkevich, S. Mandalapu, D. Wenzel, F.S. Wouters, and D.R. Klopfenstein. 2009. Synaptic scaffolding protein SYD-2 clusters and activates kinesin-3 UNC-104 in C. ele-gans. Proc. Natl. Acad. Sci. U. S. A. 106:19605-19610.
- Wagner, O.I., J. Lifshitz, P.A. Janmey, M. Linden, T.K. McIntosh, and J.F. Leterrier. 2003. Mechanisms of mitochondria-neurofilament interactions. J. Neurosci. 23:9046-9058.
- Wagner, O.I., S. Rammensee, N. Korde, Q. Wen, J.F. Leterrier, and P.A. Janmey. 2007. Softness, strength and self-repair in intermediate filament networks. Exp. Cell Res. 313:2228-2235.
- Welch, B.L. 1947. The generalisation of student's problems when several different pop-ulation variances are involved. Biometrika. 34:28-35.
- Wu, G.H., M. Muthaiyan Shanmugam, P. Bhan, Y.H. Huang, and O.I. Wagner. 2016. Identification and Characterization of LIN-2(CASK) as a Regulator of Kine-sin-3 UNC-104(KIF1A) Motility and Clustering in Neurons. Traffic (Copenha-gen, Denmark). 17:891-907.
- Yonekawa, Y., A. Harada, Y. Okada, T. Funakoshi, Y. Kanai, Y. Takei, S. Terada, T. Noda, and N. Hirokawa. 1998. Defect in synaptic vesicle precursor transport and neuronal cell death in KIF1A motor protein-deficient mice. J. Cell Biol. 141:431-441.
- Yuan, A., and R.A. Nixon. 2011. Axonal Transport Mechanisms in Cytoskeleton For-mation and Regulation. In Cytoskeleton of the Nervous System. A.R. Nixon and A. Yuan, editors. Springer New York, New York, NY. 503-527.
- Yuan, A., M.V. Rao, Veeranna, and R.A. Nixon. 2012. Neurofilaments at a glance. J. Cell Sci. 125:3257-3263.
- Zahn, T.R., J.K. Angleson, M.A. MacMorris, E. Domke, J.F. Hutton, C. Schwartz, and J.C. Hutton. 2004. Dense core vesicle dynamics in Caenorhabditis elegans neurons and the role of kinesin UNC-104. Traffic (Copenhagen, Denmark). 5:544-559.
- Zuela, N., and Y. Gruenbaum. 2016. Intermediate Filaments in Caenorhabditis elegans. Methods Enzymol. 568:661-679.