研究生: |
賴冠宏 Lai, Guan-Hung |
---|---|
論文名稱: |
以氣溶膠法合成奈米粒子並應用於甲烷蒸氣重組反應 Aerosol-Based Synthesis of Nanoparticle for Steam Methane Reforming reaction |
指導教授: |
蔡德豪
Tsai, De-Hao |
口試委員: |
汪上曉
Wong, David Shan-Hill 呂世源 Lu, Shih-Yuan |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 57 |
中文關鍵詞: | 甲烷蒸氣重組 、鎳系觸媒 、二氧化鈰 、低溫操作 |
外文關鍵詞: | steam methane reforming, Nickel-based catalyst, Ceria, Low operation temperature |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
運用奈米粒子作為非勻相反應的觸媒在能源應用領域中是一個具有發展潛力的主題。透過開發有效的觸媒,降低反應的活化能與反應所需溫度,進而提升催化活性以及反應上的操作穩定性。本研究以氣相蒸發誘導自組裝法合成氣溶膠奈米粒子作為觸媒並應用於催化甲烷蒸氣重組反應。
首先,我們透過氣溶膠法成功製備了鎳鋁奈米粒子團簇(Ni-Al2O3 NPCs)和鎳鈰鋁奈米粒子團簇(Ni-CeO2-Al2O3 NPCs),接著由X光繞射(XRD)、比表面積分析(SBET)、脈衝式化學吸附(Smsa)和程序升溫脫附(TPD)所組成的材料分析平台來研究氣溶膠粒子的材料性質。
材料分析結果指出複合式奈米結構中有超細小的鎳晶體(小於7 nm),且具有可控的化學組成及奈米粒子團簇尺寸。添加氧化鋁增加了Ni-Al2O3 NPCs和Ni-CeO2-Al2O3 NPCs的比表面積和活性金屬表面積。氧化鋁能夠增加複合式奈米結構的表面積,同時,成功地抑制催化過程中鎳金屬的燒結效應。與二氧化鈰的混摻則顯著地提高了鎳觸媒的催化活性與穩定性,更進一步降低催化反應所需的起始反應溫度至377 °C。與文獻的結果相比,達成卓越的高催化活性:低起始反應溫度(400 °C)、高催化活性、高氫氣產率(H2 = 110 %)以及8小時反應的操作穩定性。
研究成果展示出一套氣相合成方法來製備可調控組成的複合式奈米粒子,以氧化鋁奈米粒子團簇作為載體來製備氣溶膠奈米觸媒,並在低溫操作條件下達成非常高的轉換頻率(turnover frequency = 0.8 s-1 at 500 °C)。本研究展示了Ni-Ce-Al-O在協同催化上的機制理解,更進一步地增強甲烷相關能源的應用前景。
Nanocatalysts for heterogeneous reactions is a promising subject in energy application. With the development of effective catalyst, the activation energy and the required reaction temperature can be lowered, thereby improving the catalytic performance and the operational stability of the reaction.
A gas-phase evaporation-induced self-assembly (EISA) method was developed to synthesize Ni-only and Ni-CeO2 nanoparticles decorated on Al2O3 nanoparticle clusters (Ni-Al2O3 NPC and Ni-CeO2-Al2O3 NPC) as the hybrid catalysts of steam reforming of methane (SRM). A material characterization platform consisting of X-ray diffraction (XRD), specific surface area (SBET), pulse chemisorption (Smsa) and temperature-programed desorption (TPD) was employed to study material properties of the synthesized hybrid nanostructures. The results show that ultrafine Ni crystallites (< 7 nm) were created in the hybrid nanostructure with tunable chemical composition and cluster size. Addition of aluminum oxide increases the specific surface area and active metal surface area of the Ni-Ce-Al-NP. The presence of Al2O3 nanoparticle clusters increases surface area of the hybrid nanostructure and successfully suppressed the sintering effect during the catalysis. Hybridization with CeO2 significantly improved catalytic activity and stability of Ni catalyst and further reduced the required starting temperature of the reaction by 377 C. A superior high catalytic performance achieved in comparison to the results reported in the literatures: low starting temperature (400 ˚C), high activity (turnover frequency = 2.0 s-1 at 700 °C), high H2 yield (H2 = 110 %), and operation stability over 8-h reaction. The work demonstrated a facile route for controlled gas-phase synthesis of hybrid nanocatalysts using Al2O3 NPC as the support matrix in gas phase to achieve a very high turnover frequency at low temperature operation (0.8 s-1 at 500 °C) toward SRM. The mechanistic understanding of synergistic catalysis of steam reforming of methane developed in this study shown promise for a further enhancement of methane-based energy applications.
[1] J.R. Rostrup-Nielsen, Production of synthesis gas, Catalysis Today, 18 (1993) 305-324.
[2] K. Hou, R. Hughes, The kinetics of methane steam reforming over a Ni/α-Al2O3 catalyst, Chemical Engineering Journal, 82 (2001) 311-328.
[3] J.D. Holladay, J. Hu, D.L. King, Y. Wang, An overview of hydrogen production technologies, Catalysis Today, 139 (2009) 244-260.
[4] H.-S. Roh, K.-W. Jun, W.-S. Dong, S.-E. Park, Y.-S. Baek, Highly stable Ni catalyst supported on Ce–ZrO2 for oxy-steam reforming of methane, Catalysis Letters, 74 (2001) 31-36.
[5] J.R. Rostrup-Nielsen, Syngas in perspective, Catalysis Today, 71 (2002) 243-247.
[6] S.D. Angeli, G. Monteleone, A. Giaconia, A.A. Lemonidou, State-of-the-art catalysts for CH4 steam reforming at low temperature, International Journal of Hydrogen Energy, 39 (2014) 1979-1997.
[7] L. Barelli, G. Bidini, F. Gallorini, S. Servili, Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review, Energy, 33 (2008) 554-570.
[8] J.A. Turner, Sustainable Hydrogen Production, Science, 305 (2004) 972-974.
[9] J.R. Rostrup-Nielsen, J. Sehested, J.K. Nørskov, Hydrogen and synthesis gas by steam- and C02 reforming, in: Advances in Catalysis, Academic Press, 2002, pp. 65-139.
[10] M.D.R. Simbeck, - Hydrogen costs with CO2 capture, in: E.S. Rubin, D.W. Keith, C.F. Gilboy, M. Wilson, T. Morris, J. Gale, K. Thambimuthu (Eds.) Greenhouse Gas Control Technologies 7, Elsevier Science Ltd, Oxford, 2005, pp. 1059-1066.
[11] X. Fang, X. Zhang, Y. Guo, M. Chen, W. Liu, X. Xu, H. Peng, Z. Gao, X. Wang, C. Li, Highly active and stable Ni/Y2Zr2O7 catalysts for methane steam reforming: On the nature and effective preparation method of the pyrochlore support, International Journal of Hydrogen Energy, 41 (2016) 11141-11153.
[12] Y. Matsumura, T. Nakamori, Steam reforming of methane over nickel catalysts at low reaction temperature, Applied Catalysis A: General, 258 (2004) 107-114.
[13] D. Mei, V.-A. Glezakou, V. Lebarbier, L. Kovarik, H. Wan, K.O. Albrecht, M. Gerber, R. Rousseau, R.A. Dagle, Highly active and stable MgAl2O4-supported Rh and Ir catalysts for methane steam reforming: A combined experimental and theoretical study, Journal of Catalysis, 316 (2014) 11-23.
[14] D.A.J.M. Ligthart, J.A.Z. Pieterse, E.J.M. Hensen, The role of promoters for Ni catalysts in low temperature (membrane) steam methane reforming, Applied Catalysis A: General, 405 (2011) 108-119.
[15] M. Khzouz, J. Wood, B. Pollet, W. Bujalski, Characterization and activity test of commercial Ni/Al2O3, Cu/ZnO/Al2O3 and prepared Ni–Cu/Al2O3 catalysts for hydrogen production from methane and methanol fuels, International Journal of Hydrogen Energy, 38 (2013) 1664-1675.
[16] C.-j. Liu, J. Ye, J. Jiang, Y. Pan, Progresses in the Preparation of Coke Resistant Ni-based Catalyst for Steam and CO2 Reforming of Methane, ChemCatChem, 3 (2011) 529-541.
[17] J.H. Jeong, J.W. Lee, D.J. Seo, Y. Seo, W.L. Yoon, D.K. Lee, D.H. Kim, Ru-doped Ni catalysts effective for the steam reforming of methane without the pre-reduction treatment with H2, Applied Catalysis A: General, 302 (2006) 151-156.
[18] J. Sehested, Four challenges for nickel steam-reforming catalysts, Catalysis Today, 111 (2006) 103-110.
[19] G. Jones, J.G. Jakobsen, S.S. Shim, J. Kleis, M.P. Andersson, J. Rossmeisl, F. Abild-Pedersen, T. Bligaard, S. Helveg, B. Hinnemann, J.R. Rostrup-Nielsen, I. Chorkendorff, J. Sehested, J.K. Nørskov, First principles calculations and experimental insight into methane steam reforming over transition metal catalysts, Journal of Catalysis, 259 (2008) 147-160.
[20] K.O. Christensen, D. Chen, R. Lødeng, A. Holmen, Effect of supports and Ni crystal size on carbon formation and sintering during steam methane reforming, Applied Catalysis A: General, 314 (2006) 9-22.
[21] K. Kusakabe, K.-I. Sotowa, T. Eda, Y. Iwamoto, Methane steam reforming over Ce–ZrO2-supported noble metal catalysts at low temperature, Fuel Processing Technology, 86 (2004) 319-326.
[22] E.a.C.o.T.A. Tools and Basic Information for Design, in, 2019, July 1.
[23] S.J. Han, Y. Bang, J.H. Song, J. Yoo, S. Park, K.H. Kang, I.K. Song, Hydrogen production by steam reforming of ethanol over dual-templated Ni–Al2O3 catalyst, Catalysis Today, 265 (2016) 103-110.
[24] Y. Bang, S.J. Han, J. Yoo, J.H. Choi, K.H. Kang, J.H. Song, J.G. Seo, J.C. Jung, I.K. Song, Hydrogen production by steam reforming of liquefied natural gas (LNG) over trimethylbenzene-assisted ordered mesoporous nickel–alumina catalyst, International Journal of Hydrogen Energy, 38 (2013) 8751-8758.
[25] Y. Bang, S.J. Han, J.G. Seo, M.H. Youn, J.H. Song, I.K. Song, Hydrogen production by steam reforming of liquefied natural gas (LNG) over ordered mesoporous nickel–alumina catalyst, International Journal of Hydrogen Energy, 37 (2012) 17967-17977.
[26] J. Xiaoyuan, L. Guanglie, Z. Renxian, M. Jianxin, C. Yu, Z. Xiaoming, Studies of pore structure, temperature-programmed reduction performance, and micro-structure of CuO/CeO2 catalysts, Applied Surface Science, 173 (2001) 208-220.
[27] Q. Zhuang, Y. Qin*, L. Chang, Promoting effect of cerium oxide in supported nickel catalyst for hydrocarbon steam-reforming, Applied Catalysis, 70 (1991) 1-8.
[28] X. Cai, X. Dong, W. Lin, Effect of CeO2 on the catalytic performance of Ni/Al2O3 for autothermal reforming of methane, Journal of Natural Gas Chemistry, 17 (2008) 98-102.
[29] E. Ramı́rez-Cabrera, A. Atkinson, D. Chadwick, Catalytic steam reforming of methane over Ce0.9Gd0.1O2−x, Applied Catalysis B: Environmental, 47 (2004) 127-131.
[30] M. Florea, F. Matei-Rutkovska, G. Postole, A. Urda, F. Neatu, V.I. Pârvulescu, P. Gelin, Doped ceria prepared by precipitation route for steam reforming of methane, Catalysis Today, 306 (2018) 166-171.
[31] H.-S. Roh, I.-H. Eum, D.-W. Jeong, Low temperature steam reforming of methane over Ni–Ce(1−x)Zr(x)O2 catalysts under severe conditions, Renewable Energy, 42 (2012) 212-216.
[32] P. Forzatti, L. Lietti, Catalyst deactivation, Catalysis Today, 52 (1999) 165-181.
[33] D.L. Trimm, Catalysts for the control of coking during steam reforming, Catalysis Today, 49 (1999) 3-10.
[34] D.L. Trimm, Coke formation and minimisation during steam reforming reactions, Catalysis Today, 37 (1997) 233-238.
[35] J. Sehested, Sintering of nickel steam-reforming catalysts, Journal of Catalysis, 217 (2003) 417-426.
[36] J. Sehested, A. Carlsson, T.V.W. Janssens, P.L. Hansen, A.K. Datye, Sintering of Nickel Steam-Reforming Catalysts on MgAl2O4 Spinel Supports, Journal of Catalysis, 197 (2001) 200-209.
[37] J. Sehested, J.A.P. Gelten, S. Helveg, Sintering of nickel catalysts: Effects of time, atmosphere, temperature, nickel-carrier interactions, and dopants, Applied Catalysis A: General, 309 (2006) 237-246.
[38] H. Özdemir, M.A. Faruk Öksüzömer, M. Ali Gürkaynak, Preparation and characterization of Ni based catalysts for the catalytic partial oxidation of methane: Effect of support basicity on H2/CO ratio and carbon deposition, International Journal of Hydrogen Energy, 35 (2010) 12147-12160.
[39] Y. Nagai, T. Hirabayashi, K. Dohmae, N. Takagi, T. Minami, H. Shinjoh, S.i. Matsumoto, Sintering inhibition mechanism of platinum supported on ceria-based oxide and Pt-oxide–support interaction, Journal of Catalysis, 242 (2006) 103-109.
[40] K. Okuyama, I. Wuled Lenggoro, Preparation of nanoparticles via spray route, Chemical Engineering Science, 58 (2003) 537-547.
[41] Y.-F. Lu, F.-C. Chou, F.-C. Lee, C.-Y. Lin, D.-H. Tsai, Synergistic Catalysis of Methane Combustion Using Cu–Ce–O Hybrid Nanoparticles with High Activity and Operation Stability, The Journal of Physical Chemistry C, 120 (2016) 27389-27398.
[42] C.-Y. Lin, F.-C. Chou, D.-H. Tsai, Mechanistic understanding of surface reduction of Cu Ce O hybrid nanoparticles for catalytic methane combustion, Journal of the Taiwan Institute of Chemical Engineers, 92 (2018) 80-90.
[43] T.-Y. Liang, C.-Y. Lin, F.-C. Chou, M. Wang, D.-H. Tsai, Gas-Phase Synthesis of Ni–CeOx Hybrid Nanoparticles and Their Synergistic Catalysis for Simultaneous Reforming of Methane and Carbon Dioxide to Syngas, The Journal of Physical Chemistry C, 122 (2018) 11789-11798.
[44] H.-Y. Chang, G.-H. Lai, C.-Y. Lin, C.-Y. Lee, C.-C. Chia, C.-L. Hwang, H.-M. Chang, D.-H. Tsai, Reductive amination of polypropylene glycol using Ni-CeO2@Al2O3 with high activity, selectivity and stability, Catalysis Communications, 127 (2019) 15-19.
[45] V. Perrichon, L. Retailleau, P. Bazin, M. Daturi, J.C. Lavalley, Metal dispersion of CeO2–ZrO2 supported platinum catalysts measured by H2 or CO chemisorption, Applied Catalysis A: General, 260 (2004) 1-8.
[46] A. Borodziński, M. Bonarowska, Relation between Crystallite Size and Dispersion on Supported Metal Catalysts, Langmuir, 13 (1997) 5613-5620.
[47] J.A. Lercher, J.H. Bitter, W. Hally, W. Niessen, K. Seshan, Design of stable catalysts for methane-carbon dioxide reforming, in: J.W. Hightower, W. Nicholas Delgass, E. Iglesia, A.T. Bell (Eds.) Studies in Surface Science and Catalysis, Elsevier, 1996, pp. 463-472.
[48] N. Wang, K. Shen, L. Huang, X. Yu, W. Qian, W. Chu, Facile Route for Synthesizing Ordered Mesoporous Ni–Ce–Al Oxide Materials and Their Catalytic Performance for Methane Dry Reforming to Hydrogen and Syngas, ACS Catalysis, 3 (2013) 1638-1651.
[49] X. Fang, C. Peng, H. Peng, W. Liu, X. Xu, X. Wang, C. Li, W. Zhou, Methane Dry Reforming over Coke-Resistant Mesoporous Ni-Al2O3 Catalysts Prepared by Evaporation-Induced Self-Assembly Method, ChemCatChem, 7 (2015) 3753-3762.
[50] J.M. Ginsburg, J. Piña, T. El Solh, H.I. de Lasa, Coke Formation over a Nickel Catalyst under Methane Dry Reforming Conditions: Thermodynamic and Kinetic Models, Industrial & Engineering Chemistry Research, 44 (2005) 4846-4854.
[51] T.-J. Huang, H.-J. Lin, T.-C. Yu, A Comparison of Oxygen-vacancy Effect on Activity Behaviors of Carbon Dioxide and Steam Reforming of Methane over Supported Nickel Catalysts, Catalysis Letters, 105 (2005) 239-247.
[52] N. Laosiripojana, S. Assabumrungrat, Methane steam reforming over Ni/Ce–ZrO2 catalyst: Influences of Ce–ZrO2 support on reactivity, resistance toward carbon formation, and intrinsic reaction kinetics, Applied Catalysis A: General, 290 (2005) 200-211.
[53] X. Zhang, L. Peng, X. Fang, Q. Cheng, W. Liu, H. Peng, Z. Gao, W. Zhou, X. Wang, Ni/Y2B2O7 (BTi, Sn, Zr and Ce) catalysts for methane steam reforming: On the effects of B site replacement, International Journal of Hydrogen Energy, 43 (2018) 8298-8312.
[54] M. Ouyang, P. Boldrin, R.C. Maher, X. Chen, X. Liu, L.F. Cohen, N.P. Brandon, A mechanistic study of the interactions between methane and nickel supported on doped ceria, Applied Catalysis B: Environmental, 248 (2019) 332-340.
[55] J. Jeon, S. Nam, C.H. Ko, Rapid evaluation of coke resistance in catalysts for methane reforming using low steam-to-carbon ratio, Catalysis Today, 309 (2018) 140-146.
[56] W.-S. Dong, H.-S. Roh, K.-W. Jun, S.-E. Park, Y.-S. Oh, Methane reforming over Ni/Ce-ZrO2 catalysts: effect of nickel content, Applied Catalysis A: General, 226 (2002) 63-72.
[57] M. Krumpelt, T.R. Krause, J.D. Carter, J.P. Kopasz, S. Ahmed, Fuel processing for fuel cell systems in transportation and portable power applications, Catalysis Today, 77 (2002) 3-16.
[58] M.H. Akbari, A.H.S. Ardakani, M.A. Tadbir, A microreactor modeling, analysis and optimization for methane autothermal reforming in fuel cell applications, Chemical Engineering Journal, 166 (2011) 1116-1125.
[59] A. Vita, G. Cristiano, C. Italiano, L. Pino, S. Specchia, Syngas production by methane oxy-steam reforming on Me/CeO2 (Me=Rh, Pt, Ni) catalyst lined on cordierite monoliths, Applied Catalysis B: Environmental, 162 (2015) 551-563.
[60] N. Kumar, Z. Wang, S. Kanitkar, J. Spivey, Methane reforming over Ni-based pyrochlore catalyst: deactivation studies for different reactions, Applied Petrochemical Research, 6 (2016) 201-207.
[61] K.Y. Koo, H.-S. Roh, Y.T. Seo, D.J. Seo, W.L. Yoon, S.B. Park, Coke study on MgO-promoted Ni/Al2O3 catalyst in combined H2O and CO2 reforming of methane for gas to liquid (GTL) process, Applied Catalysis A: General, 340 (2008) 183-190.
[62] K.Y. Koo, H.-S. Roh, U.H. Jung, D.J. Seo, Y.-S. Seo, W.L. Yoon, Combined H2O and CO2 reforming of CH4 over nano-sized Ni/MgO-Al2O3 catalysts for synthesis gas production for gas to liquid (GTL): Effect of Mg/Al mixed ratio on coke formation, Catalysis Today, 146 (2009) 166-171.
[63] X. Song, Z. Guo, Technologies for direct production of flexible H2/CO synthesis gas, Energy Conversion and Management, 47 (2006) 560-569.
[64] D. Qin, J. Lapszewicz, X. Jiang, Comparison of Partial Oxidation and Steam-CO2Mixed Reformingof CH4to Syngas on MgO-Supported Metals, Journal of Catalysis, 159 (1996) 140-149.
[65] V.R. Choudhary, K.C. Mondal, CO2 reforming of methane combined with steam reforming or partial oxidation of methane to syngas over NdCoO3 perovskite-type mixed metal-oxide catalyst, Applied Energy, 83 (2006) 1024-1032.