簡易檢索 / 詳目顯示

研究生: 林哲宇
Lin, Che-Yu
論文名稱: 以電化學技術與自組裝單分子膜表面改質技術於透明導電玻璃上製備鉑電極之研究
Fabrication of platinum electrodes on transparent conductive glass by electrochemical deposition and surface modification of self-assembled monolayers
指導教授: 萬其超
Wan, Chi-Chao
口試委員: 竇唯平
Dow, Wei-Ping
林正裕
Lin, Jeng-Yu
顏溪成
Yen, Shi-Chern
王詠雲
Wang, Yung-Yun
胡啟章
Hu, Chi-Chang
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 142
中文關鍵詞: 染料敏化太陽能電池電化學電鍍表面改質自組裝單分子層
外文關鍵詞: Dye-sensitized solar cell, electrochemical deposition, surface modification, self-assembled monolayer
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的主要目的是以電化學沉積技術與自主裝單分子膜表面改質
    技術來開發一簡單、低溫的製程以製備應用於染料敏化太陽能電池上之鉑
    對電極,其中電化學沉積技術包含了無電電鍍與電鍍兩種方式。
    在無電電鍍沉積的製程上, 吾人配合適當的表面改質技術
    (3-(2-Aminoethylamino)propylmethyl-dimethoxysilane (Me-EDA-Si))成功開
    發出一低溫濕式製程,可製備出具有高度選擇性的鉑對電極於透明導電玻
    璃上。吾人透過螢光顯微鏡、接觸角測試與原子力顯微鏡分析,發現
    Me-EDA-Si 可成功的改質於透明導電玻璃上,此外,本研究同時利用高解
    析電子能譜儀來分析每一步驟的改質結果,證明鈀觸媒可成功的接於導電
    玻璃上以催化無電鍍的進行,因而發現經無電電鍍沉積的薄膜呈現粗糙的
    表面而提高了鉑觸媒表面催化反應的活化位置。因此利用無電電鍍所製備
    出的鉑對電極所組裝而成的染料敏化太陽能電池具有較利用濺鍍法所製
    備之鉑對電極所組成的電池有較高效率。
    而在電鍍製程的開發上,吾人成功的利用直接電鍍法在含有添加劑
    Me-EDA-Si 的電鍍液中於30 秒內製備出一同時具有低電子轉移阻抗、較
    少的白金含量與高活性面積的鉑對電極。吾人也發現,利用Me-EDA-Si
    作為電鍍添加劑時,可以提高電鍍的電流效率且可以抑制半圓形的白金晶
    粒成長,因此可得到較高比表面積的鉑電極。此外,將此利用電鍍法所製
    備之鉑對電極組裝成染料敏化太陽能電池,吾人發現在Me-EDA-Si 添加濃
    度為0.01 vol%時,其效率可達7.39%遠高於利用濺鍍法所製備之鉑對電
    極。
    使用電鍍法製備白金對電極的過程中,我們發現添加劑具有加速電鍍
    並抑制半圓形晶粒成長的效果,所以在最後一部分,我們利用電化學實驗
    IV
    來了解添加劑對白金在電鍍時成核與成長機制的變化。根據電流-時間的變
    化曲線和成核、成長機制模擬的結果發現,在較高白金濃度的情況下,添
    加少量的Me-EDA-Si 具有幫助瞬間(instantaneous)成核的效果。相反地,
    過量的添加劑會使得成核機制朝向逐步(progressive)成長。


    In this study, we aim to develop a simple, low temperature process to
    fabricate the Pt counter electrodes for dye-sensitized solar cells (DSSCs) based
    on electrochemical deposition techniques including electroless deposition
    (ELD), electrodeposition (ECD) and surface modification of self-assembled
    monolayers (SAMs).
    By electroless deposition, a cost-effective and low- temperature wet
    process to coat Pt on counter electrode has been developed with superior
    coating selectivity by means of self-assembly monolayers modification and
    electroless deposition techniques. Images of fluorescent test and atomic force
    microscope measurements demonstrated that 3-(2-Aminoethylamino)
    propylmethyl- dimethoxysilane (Me-EDA-Si) was homogeneously grafted on
    FTO surface and XPS result proves that the palladium deposited on the FTO
    surface initiates the electroless deposition. The Pt deposit so obtained exhibits
    rough morphology and increased active sites. This method makes it easy to
    deposit a Pt thin-film under ambient condition without the need for high
    vacuum chamber. Moreover, the so-prepared DSSC exhibits improved
    performance compared to the DSSC with a sputtered Pt counter electrode.
    In the case of electrodeposition, Pt counter electrodes with low
    charge-transfer resistance (Rct), low Pt loading and high active surface area can
    be obtained within 30s by using the direct-current deposition in the presence of
    3-(2-Aminoethylamino) propyl -methyldimethoxysilane (Me-EDA-Si) as an
    II
    additive. The addition of Me-EDA-Si can not only enhance the current
    efficiency but also inhibit the growth of semicircle-like grains, thus resulting in
    Pt electrode with high active surface area. Consequently, the dye-sensitized
    solar cells (DSSCs) fabricated with so-prepared Pt electrodes exhibited cell
    efficiency of 7.39% while 0.01 vol% Me-EDA-Si was added, which is much
    superior to that with sputtered-Pt electrodes under the same assembly
    conditions.
    In the last part, we would like to know how additive affects the Pt
    nucleation and growth mechanism on the FTO surface since the additive
    seemingly acts as an accelerator during Pt electrodeposition by studying the
    FESEM images of electrodeposited-Pt electrode fabricated from a plating bath
    containing Me-EDA-Si. According to the current-time transients experiments
    and S-H theory model simulation, we found that Me-EDA-Si functions as
    accelerator to promote nucleation with low concentration of additive under
    high precursor concentration. By contrast, excess additive tends to influence
    the nucleation of Pt deposition towards to progressive mechanism.

    Abstract ............................................................................................................... I 摘要 ............................................................................................................ III Table of Contents .............................................................................................. V List of Tables .................................................................................................... IX List of Figures ................................................................................................... X Chapter 1 Introduction of Dye-Sensitized Solar Cells ........................................ 1 1.1 General background of Dye-Sensitized Solar Cells ............................. 2 1.2 The operating principle of DSSCs ....................................................... 5 1.3 Counter electrodes in dye-sensitized solar cells .................................. 8 1.3.1 Role of counter electrode ........................................................................ 8 1.3.2 Energy loss in counter electrode ............................................................. 8 1.3.3 Surface coating on counter electrode ................................................... 11 1.3.3.1 Carbonaceous counter electrode ................................................. 11 1.3.3.2 Conducting polymer-based counter electrode ............................ 14 1.3.3.3 Platinum-based counter electrode ............................................... 17 1.3.3.4 Reason for developing the Pt counter electrode by electrochemical deposition .......................................................... 30 1.4 Introduction of self-assembled monolayers (SAMs) .................................. 32 1.4.1 The structure of self-assembled monolayers (SAMs) .......................... 33 1.4.2 The working mechanism of silane-based self-assembled monolayers . 34 1.5 Metal deposition on SAMs-modified substrate .......................................... 37 1.5.1 Electrochemical metal deposition on top of SAMs-modified oxide VI surface. ................................................................................................... 37 1.5.1.1 Application of SAMs molecules to modify the surface by silanol group ........................................................................................... 37 1.5.1.2 Role of SAMs on the substrate for metal deposition .................. 40 1.6 Motivation of this research ......................................................................... 43 Chapter 2 Electroless Platinum Counter Electrode for Dye-Sensitized Solar Cells by Using Self-Assembled Monolayer Modification ................. 44 2.1 Introduction ................................................................................................. 44 2.1.1 Catalyzation process for electroless deposition .................................... 46 2.1.2 Platinum bath for electroless deposition .............................................. 47 2.2 Experiments ................................................................................................ 49 2.2.1 Materials and chemicals ....................................................................... 49 2.2.2 Preparation of Pt counter electrodes ..................................................... 51 2.2.3 Characterization of surface morphology, composition and adhesion... 52 2.2.4 Measurement of electrochemical impedance spectroscopy ................. 54 2.2.5 Photocurrent density-voltage test of ELD-Pt ....................................... 54 2.3 Results and discussion ................................................................................ 55 2.3.1 Pd-activated FTO substrate for electroless deposition ......................... 55 2.3.2 Surface modification with SAMs molecular on FTO surface for electroless deposition ............................................................................. 58 2.3.2.1 Reasons for choosing Me-EDA-Si as a surface modifier – Silanes with methoxyl- anchoring groups (-OCH3) ................................ 58 2.3.2.2 Reasons for choosing Me-EDA-Si as a surface modifier – Adhesion/catalyst layer for Pt electroless deposition on FTO surface ......................................................................................... 58 VII 2.3.2.3 Reasons for choosing Me-EDA-Si as surface modifier – Steric hindrance effect ........................................................................... 59 2.3.3 Characterization of ME-EDA-Si-modified FTO substrate .................. 63 2.3.3.1 Solvent selection for surface modification of Me-EDA-Si ........ 63 2.3.3.2 Surface modification of FTO by ME-EDA-Si ............................ 63 2.3.3.2.1 Contact angle test and atomic force microscopy (AFM) analysis ............................................................................. 63 2.3.3.2.2 Fluorescence imaging technique ..................................... 66 2.3.4 Characterization of the formation of Pd-activated SAMs on FTO substrate (catalyzation step) ................................................................... 67 2.3.4.1 XPS analysis ............................................................................... 67 2.3.5 Surface morphology and composition of as-deposited Pt thin film ..... 70 2.3.6 Electrochemical impedance spectroscopy (EIS) .................................. 72 2.3.7 The Photocurrent-voltage (I-V) curves ................................................ 73 2.4 Conclusions ................................................................................................. 75 Chapter 3 High-performance and low Platinum loading electrodeposited-Pt counter electrodes for dye-sensitized solar cells ................................ 76 3.1 Introduction ................................................................................................. 76 3.2 Experiment .................................................................................................. 78 3.2.1 Materials and chemicals ....................................................................... 78 3.2.2 Preparation of Pt counter electrodes ..................................................... 80 3.2.3 Characterization of electrodeposited-Pt counter electrodes ................. 80 3.2.4 Measurement of electrochemical properties – Electrochemical impedance spectroscopy and cyclic voltammetric test .......................... 81 3.2.5 Photocurrent density-voltage test ......................................................... 81 VIII 3.3 Results and discussion ................................................................................ 83 3.3.1 Surface morphology and ICP analysis ................................................. 83 3.3.1.1 Influence of the additive – Concentration effect......................... 83 3.3.1.2 The influence of the additive – Time difference ......................... 87 3.3.2 Chronopotentiometric studies ............................................................... 89 3.3.3 Electrochemical impedance spectroscopy (EIS) .................................. 93 3.3.4 Cyclic voltammetric (CV) analysis ...................................................... 95 3.3.5 The Photocurrent-voltage (I-V) curves ................................................ 98 3.4 Conclusion ................................................................................................ 100 Chapter 4 The study of nucleation and growth mechanism of electrodeposition Platinum on FTO glass in the presence of 3-(2-Aminoethylamino) propylmethyldimethoxysilane .......................................................... 101 4.1 Introduction ............................................................................................... 101 4.2 Experiment ................................................................................................ 105 4.3 Results and discussion .............................................................................. 106 4.3.1 Cyclic voltammetry ............................................................................ 106 4.3.2 Nucleation and growth of platinum – Current-time transients ........... 108 4.3.3 Nucleation and growth mechanism of platinum – SEM analysis ...... 113 4.4 Conclusions ............................................................................................... 118 Chapter 5 Conclusions and Future works ....................................................... 119 5.1 Conclusions ............................................................................................... 119 5.2 Future works ............................................................................................. 120 Chapter 6 References ...................................................................................... 122 Chapter 7 Publications ………………………………………………...…….141

    1 M. Grätzel, “Photoelectrochemical Cells”, Nature, 414 (2001) 338.
    2 H. Vogel, “Lehrbuch der Photographie”, Berlin, 1878.
    3 H. Meier, “Sensitization of Electrical Effects in Solids”, J. Phys. Chem., 69
    (1965) 719.
    4 H. Tributsch, M. Calvun, “Electrochemistry of excited molecules.
    Photoelectrochemical reactions of chlorophylls”, Photochem. Photobiol.,
    14 (1971) 95.
    5 R. Memming, H. Tributsch, “Electrochemical investigations on the spectral
    sensitization of gallium phosphide electrodes”, J. Phys. Chem., 75 (1971)
    562.
    6 H. Gerischer, “Electrochemical techniques for the study of
    photosensitization”, Photochem. Photobiol., 16 (1972)243.
    7 C. W. Tang, “Two-layer Organic Photovoltaic Cell”, Appl. Phys. Lett., 48
    (1986) 183.
    8 J. Desilvestro, M. Grätzel, L. Kavan, J. Moser, “Highly efficiency
    sensitization of titanium dioxide”, J. Am. Chem. Soc. 107 (1985) 2988
    9 B. O’Regan, M. Grätzel, “A low-cost, high-efficiency solar cell based on
    dye-sensitized colloidal TiO2 films”, Nature, 353 (1991) 737.
    10 D. Cahen, G. Hodes, M. Grätzel, J. F. Guillemoles, I. Riess, “Nature of
    Photovoltaic Action in Dye-Sensitized Solar Cells”, J. Phys. Chem. B, 104
    123
    (2000) 2053.
    11 N. Papageorgiou, W. F. Maier, M. Grätzel, “An iodine/Triiodine reduction
    electrocatalyst for aqueous and organic media”, J. Electrochem. Soc., 144
    (1997) 876.
    12 N. Papageorgiou, “Counter-electrode function in nanocrystalline
    photoelectrochemical cell configurations”, Coordin. Chem. Rev., 248
    (2004) 1421.
    13 J. Halme, P. VAHERMAA, k. Miettunen, P. Lund, “Device physics of dye
    solar cells”, Adv. Mater., 22 (2010) E210.
    14 Hauch. A., Georg A., “Diffusion in the electrolyte and charge-transfer
    reaction at the platinum electrode in dye-sensitized solar cells”,
    Electrochim.Acta, 46 (2001) 3457.
    15 H. S. Wroblowa, A. Saunders, “Flow-through electrodes: II. The I3-/Iredox
    couple”, J. Electroanal. Chem. 42 (1973) 329.
    16 K. Suzuki, M. Yamamoto, M. Kumagai, S. Yanagida, “Application of
    carbon nanotubes to counter electrodes of dye-sensitized solar cells”,
    Chem. Lett., 32 (2003) 28.
    17 J. E. Trancik, S. C. Barton, J. Hone, “Transparent and catalytic carbon
    nanotube films”, Nano Lett., 8 (2008) 982.
    18 J. Han, H. Kim, D. Y. Kim, S. M. Jo, S. Y. Jang, “Water-soluble
    polyelectrolyte-grafted multiwalled carbon nanotube thin films for
    efficient counter electrode of dye-sensitized solar cells”, ACS Nano, 4
    (2010) 3503.
    19 S. Hwang, J. Moon, S. Lee, D. H. Kim, D. Lee, W. Choi, M. Jeon, “Carbon
    124
    nanotubes as counter electrode for dye-sensitized solar cells”, Electron.
    Lett., 43 (2007) 1455.
    20 T. N. Murakami, S. Ito, Q. Wang, M. K. Nazeeruddin, T. Bessho, I. Cesar, P.
    Liska, R. Humphry-Baker, P. Comte, P. Pechy, M. Grätzel, “Highly
    efficient dye-sensitized solar cells based on carbon black counter
    electrodes”, J. Electrochem. Soc., 153 (2006) A2255.
    21 W. J. Lee, E. Ramasamy, D. Y. Lee, J. S. Song, “Performance variation of
    carbon counter electrode based dye-sensitized solar cell”, Sol. Energy
    Mater. Sol. Cells, 92 (2008) 814.
    22 K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J. Nakamura, K. Murata,
    “High-performance carbon counter electrode for dye-sensitized solar cells”
    Sol. Energy Mater. Sol. Cells, 79 (2003) 459.
    23 H. Lindstrom, A. Holmberg, E. Magnusson, S. E. Lindquist, L. Malmqvist,
    A. Hagfeldt, “A new method for manufacturing nanostructured electrodes
    on plastic substrates”, Nano Lett., 1 (2001) 97.
    24 J. G. Nam, Y. J. Park, B. S. Kim, J. S. Lee, “Enhancement of the efficiency
    of dye-sensitized solar cell by utilizing carbon nanotubes counter
    electrode”, Scripta Mater., 62 (2010) 148.
    25 M. Dietrich, J. Heinze, G. Heywang, F. Jonas, “Electrochemical and
    spectroscopic characterization of polyalkylenedioxythiophenes”, J.
    Electroanal. Chem., 369 (1994) 87.
    26 T. Yohannes, O. Inganas, “Photoelectrochemical studies of the junction
    between poly[3-(4-octylphenyl)thiophene] and a redox polymer
    electrolyte”, Sol. Energy Mater. Sol. Cells, 51 (1998) 193.
    125
    27 F. Jonas, I. Schrader, “Conductive modifications of polymers with
    polypyrroles and poly thiophenes”, Synth. Met. 41 (1991) 831.
    28 Y. Saito, W. Kubo, T. Kitamura, Y. Wada, S. Yanagida, “I-/I3
    - redox reaction
    behavior on poly(3-4-octylphenylthiophene) counter electrode in
    dye-sensitized solar cells”, J. Photochem. Photobiol. A, 164 (2004) 153.
    29 K. M. Lee, P. Y. Chen, C. Y. Hsu, J. H. Huang, W. H. Ho, “A
    high-performance counter electrode based on
    poly(3,4-alkylenedioxythiophene) for dye-sensitized solar cells”, J. Power
    Sources, 188 (2009) 313.
    30 A. Kay, M. Grätzel, “Low cost photovoltaic modules based on dye
    sensitized nanocrystalline titanium dioxide and carbon powder”, Sol.
    Energy Mater. Sol. Cells, 44 (1996) 99.
    31 F. C. Wu, C. C. Wan, Y. Y. Wang, L. D. Tsai, K. L. Hsueh, “Improvement of
    Pt-catalyst dispersion and utilization for direct methanol fuel cells using
    silane coupling agent”, J. Electrochem. Soc., 154 (2007) B528.
    32 H. Bönnemann, G. Khelashvili, S. Behrens, A. Hinsch, K. Skupien, E.
    Dinjus, “ Role of the platinum nanoclusters in the iodine/triiodine redox
    system of dye solar cells”, J. Clust. Sci., 18 (2006) 141.
    33 V. A. Macagno, M. C. Giordano, “Kinetics and Mechanisms of
    Electrochemical Reactions on Platinum with Solutions of Iodine-Sodium
    Iodide in Acetonitrile”, Electrochim. Acta, 14 (1969) 335.
    34 V. A. Macagno, M. C. Giordano, “Study of the iodide—tri-iodide redox
    electrode in dimethylsulphoxide”, Electrochim. Acta, 11 (1966) 1553.
    35 X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, E. Abe, “Effect of the
    126
    thickness of the Pt film coated on a counter electrode on the performance
    of a dye-sensitized solar cell”, J. Electroanal. Chem., 570 (2004) 257.
    36 X. Fang, T. Ma, G. Guan, M. Akiyama, E. Abe, “Performances
    characteristics of dye-sensitized solar cells based on counter electrodes
    with Pt films of different thickness”, J. Photochem. Photobiol. A.
    Chemistry, 164 (2004) 179.
    37 N. Papageorgiou, W. F. Maier, M. Gratzel, “An iodine/triiodide reduction
    electrocatalyst for aqueous and organic media”, J. Electrochem. Soc., 144
    (1997) 876.
    38 G. Wang, Y. Lin, X. Xiao, X. Li, W. Wang, “X-ray photoelectron
    spectroscopy analysis of the stability of platinized catalytic electrodes in
    dye-sensitized solar cells”, Surf. Interface Anal., 36 (2004) 1437.
    39 J. L. Lan, Y. Y. Wang, C. C. Wan, T. C. Wei, H. P. Feng, C. Peng, H. P.
    Cheng, Y. H. Chang, W. C. Hsu, “The simple and easy way to
    manufacture counter electrode for dye-sensitized solar cells”, Curr. Appl.
    Phys. 10 (2010) s168.
    40 C. Y. Lin, J. Y. Lin, J. L. Lan, T. C. Wei, C. C. Wan, “Electroless Platinum
    Counter Electrode for Dye-Sensitized Solar Cells by Using Self-Assembly
    Monolayer Modification”, Electrochem. Solid State Lett., 13 (2010) D77.
    41 T. C. Wei, C. C. Wan and Y. Y. Wang, “Poly(N-vinyl-2-pyrrolidone)-capped
    platinum nanoclusters on indium-tin oxide glass as counter electrode for
    dye-sensitized solar cells”, Appl. Phys. Lett., 88 (2006) 103122.
    42 T. C. Wei, C. C. Wan, Y. Y. Wang, C. C. Chen and H. S. Shiu,
    “ Immobilization of poly(N-vinyl-2-pyrrolidone)-capped platinum
    127
    nanoclusters on indium-tin oxide glass and its application in dye-sensitized
    solar cells”, J. Phys. Chem. C 111 (2007) 4847.
    43 T. C. Wei, C. C. Wan, Y. Y. Wang, H. H. Tang, “Method for preparing an
    electrode comprising an electrochemical catalyst layer thereon”, U.S.
    Patent, 11/715462 (2008).
    44 C. Peng, J. L. Lan, Y. H. Chang, W. C. Hsu, H. P. Cheng, S. P. Feng, W. H.
    Chen, W. H. Chen, T. C. Wei, “Method of forming an electrode including
    an electrochemical catalyst layer”, U.S. Patent 12/213307 (2009).
    45 T. C. Wei, C. C. Wan, Y. Y. Wang, H. H. Tang, “Method for forming an
    electrode comprising an electrocatalyst layer thereon and electrochemical
    device comprising the same”, Taiwan Patent, No. I330409 (2010).
    46 E. J. M. O’Sullivan, “Fundamental and practical aspects of the electroless
    deposition reaction”, Advances in Electrochemical Science and
    Engineering, 7 (2001) 225.
    47 M. Charbonnier, M. Romand, Y. Goepfert, D. Leonard, M. Bouadi,
    “Copper metallization of polymers by a palladium-free electroless
    process”, Surf. Coat. Tech., 200 (2006) 5478.
    48 C. M. Chen, C. H. Chen, T. C. Wei, “Chemical deposition of platinum on
    metallic sheets as counter electrodes for dye-sensitized solar cells”,
    Electrochim. Acta, 55 (2010) 1687.
    49 C. M. Chen, C. H. Chen, S. J. Cherng, T. C. Wei, “Electroless deposition of
    platinum on indium tin oxide glass as the counter electrode for
    dye-sensitized solar cells”, Mater. Chem. Phys., 124 (2010) 173.
    50 S. S. Kim, Y. C. Nah, Y. Y. Noh, J. Jo, D. Y. Kim, “Electrodeposited Pt for
    128
    cost-efficient and flexible dye-sensitized solar cells”, Electrochim. Acta 51
    (2006) 3814.
    51 L. L. Li, C. W. Chang, C. C. Chen, E. W. G. Diau, “Electrodeposited low
    platinum loaded films as efficient counter electrodes for dye-sensitized
    solar cells”, 218th ECS meeting, Abstract no. 1660.
    52 A. Kay, M. Grätzel, “Low cost photovoltaics modules based on dye
    sensitized nanocrystalline titanium dioxide and carbon power”, Sol.
    Energy Mater. Sol. Cells, 44 (1996) 99.
    53 E. Olsen, G. Hagen, S. E. Lindquist, “Dissolution of platinum in methoxy
    propionitrile containing LiI/I2”, Sol. Energy Mater. Sol. Cells, 63 (2000)
    267.
    54 L. Y. Lin, P. C. Nien, C. P. Lee, K. W. Tsai, M. H. Yeh, R. Vittal, K. C. Ho,
    “Low-temperature flexible photoanode and net-like Pt counter electrode
    for improving the performance of dye-sensitized solar cells”, J. Phys.
    Chem. C, 114 (2010) 21808.
    55 C. Duan, M. E. Meyerhoff, “Separation-Free Sandwich Enzyme
    Immunoassays Using Microporous Gold Electrodes and Self-Assembled
    Monolayer/Immobilized Capture Antibodies”, Anal. Chem., 66 (1994)
    1369.
    56 C. D. Bain, G. M. Whitesides, “Depth sensitivity of wetting: monolayers
    of .omega.-mercapto ethers on gold”, J. Am. Chem. Soc., 110 (1988) 5897.
    57 R. K. Smith, P. A. Lewis, P. S. Weiss, “Patterning self-assembled
    monolayers”, Prog. Surf. Sci., 75 (2004) 1.
    58 M. Geissler, H. Kind, P. Schmidt-Winkel, B. Michel, E. Delamarche,
    129
    “Direct patterning of NiB on glass substrate using microcontact printing
    and electroless deposition”, Langmuir, 19 (2003) 6283.
    59 L. Wu, F. Camacho-Alanis, G. Zangari, N. Swami, “Electroless deposition
    of Cu on acid terminated self assembled monolayers on semiconductor
    surfaces”, 211th ECS meeting, Abstract no. 509.
    60 Y. Lu, S. Liang, M. Chen, J. Jia, “Fabrication amd characterization of
    positive and negative copper sulfide micropatterns on self-assembled
    monolayers”, J. Colloid Interf. Sci., 332 (2009) 32.
    61 Y. Lu, G. Yi, J. Jia, Y. Liang, “Preparation and characterization pf patterned
    copper sulfide thin films on n-type TiO2 film surfaces”, Appl. Surf. Sci.,
    256 (2010) 7316.
    62 R. A. Hatton, S. R. Day, M. A. Chesters, M. R. Willis, “Organic
    electroluminescent devices: enhanced carrier injection using an
    organosilane self assembled monolayer (SAM) derivatized ITO electrode”,
    Thin Solid Films, 394 (2001) 292.
    63 W. C. Bigelow, D. L. Pickett, W. A. Zisman, “Pleophobic monolayers. 1.
    Films adsorbed from solution in non-polar liquids”, J. Colloid Interf. Sci.,
    1 (1946) 513.
    64 A. Ulman, “Formation and structure of self-assembled monolayers”, Chem.
    Rev., 96 (1996) 1533.
    65 Y. T. Tao, “Structure comparsion of self-assembled monolayers of
    N-alkanoic acids on the surfaces of silver, copper and aluminum” J. Am.
    Chem. Soc., 115 (1993) 4350.
    66 D. L. Allara, R. G. Nuzzo, “Spontaneously organized molecular assemblies.
    130
    1. Formation, dynamics and physical-properties of normal-alkanoic acids
    adsorbed from solution on an oxided aluminum surface”, Langmuir, 1
    (1985) 45.
    67 R. G. Nuzzo, D. L. Allara, “Adsorption of bifunctional organic disulfides
    on gold surface” J. Am. Chem. Soc., 105 (1983) 4481.
    68 R. G. Nuzzo, F. A. Fusco, D. L. Allara, “Spontaneously organized
    molecular assemblies. 3. Preparation and properties of solution adsorbed
    monolayers of organic disulfides on gold surface”, J. Am. Chem. Soc., 109
    (1987) 2358.
    69 E. Delamarche, M. Geissler, R. H. Magnuson, H. Schmid, B. Michel,
    “Pattern NiB electroless deposition on glass using an electroplated Cu
    mask, microcontact printing and wet etching”, Langmuir, 19 (2003) 5892.
    70 M. D. Porter, T. B. Bright, D. L. Allara, C. E. D. Chidsey, “Spontaneously
    organized molecular assemblies. 4. Structural characterization of
    normal-alkyl thiol monolayers on gold by optical ellipsometry, infrared
    spectroscopy and electrochemistry”, J. Am. Chem. Soc., 109 (1987) 3559.
    71 D. K. Schwartz, “Mechanisms and kinetics of self-assembled monolayer
    formation”, Annu. Rev. Phys. Chem., 52 (2001) 107.
    72 S. Campuzano, V. Escamilla-Gomez, M. Pedrero, J. M. Pingarron,
    “Electrochemical biosensors using thiolated tetrathiafulvalene derivative
    self-assembled monolayers. Application to the construction of a fructose
    biosensor”, 213th ECS meeting, Abstract no. 1223.
    73 F. Nakamura, E. Ito, Y. Sakao, N. Ueno, I. N. Gatuna, F. S. Ohuchi, M.
    Hara, “Preparation of a branched DNA self-assembled monolayer toward
    131
    sensitive DNA biosensors”, Nano Lett., 3 (203) 1083.
    74 P. Lu, A. V. Walker, “Investigation of the mechanism, of electroless
    deposition of copper on functionalized alkanethiolate self-assembled
    monolayers adsorbed on gold”, Langmuir, 23 (2007) 12577.
    75 J. Sagiv, “Organized monolayers by adsorption, I. Formation and structure
    of oleophobic mixed monolayers on solid surfaces”, J. Am. Chem. Soc.,
    102 (1980) 92.
    76 R. R. Rye, G. C. Nelson, M. T. Dugger, “Mechanistic aspects of
    alkylchlorosilane coupling reactions”, Langmuir, 13 (1997) 2965.
    77 P. Silberzan, L. Leger, D. Ausserre, J. J. Benattar, “Silanation of
    silcasurface. A new method of constructing pure or mixed monolayers”
    Langmuir, 7 (1991) 1647.
    78 S. Okumoto, N, Fujita, S. Yamabe, “Theoretical study of Hydrolysis and
    condensation of silicon alkoxides”, J. Phys. Chem. A, 102 (1998) 3991.
    79 H. Shimakoshi, A. Nakazato, M. Tokunaga, K. Katagiri, K. Ariga, J. I.
    Kikuchi, Y. Hisaeda, “Hydrophobic vitamin B12. Part 18. Preparation of a
    sol-gel modified electrode trapped with a vitamin B12 derivative and its
    photoelectrochemical reactivity”, Dalton Trans., (2003) 2308.
    80 X. Liu, K. G. Neoh, E. T. Kang, “Viologen-functionalized conductive
    surface: physicochemical and electrochemical characteristics, and
    stability”, Langmuir, 18 (2002) 9041.
    81 N. Y. Kim, N. L. Jeon, I. S. Choi, S. Takami, Y. Harada, K. R. Finnie, G. S.
    Girolami, R. G. Nuzzo, G. M. Whitesides, P. E. Laibinis, “Surface-initiated
    ring-opening metathesis polymerization on Si/SiO2”, Macromolecules, 33
    132
    (2000) 2793.
    82 M. Weck, J. J. Jackiw, R. R. Rossi, P. S. Weiss, R. H. Grubbs,
    “Ring-opening metathesis polymerization from surfaes”, J. Am. Chem.
    Soc., 121 (1999) 4088.
    83 L. Y. Yang, X. Z. Chen, H. Xu, D. Q. Ye, H. Tian, S. G. Yin, “Surface
    modification of indium tin oxide anode with self-assembled monolayer
    modified Ag film for improved OLED device characteristics”, Appl. Surf.
    Sci., 254 (2008) 5055.
    84 J. Liu, L. Zhang, N. Gu, Q. Hong, J. Ren, Y. Wu, “Micro-patterning of
    3-aminopropyltrimethoxysilane self-assembled monolayers with colloidal
    gold”, Supramolecular Science, 5 (1998) 705.
    85 E. Delamarche, M. Geissler, J. Vichiconti, W. S. Graham, P. A. Andry, J. C.
    Flake, P. M. Fryer, R. W. Nunes, B. Michel, E. J. O’sullivan, H. Schmid, H.
    Wolf, R. L. Wisnieff, “Electroless deposition of NiB on 15 inch glass for
    liquid crystal displays”, Langmuir, 19 (2003) 5923.
    86 E. Delamarche, J. Vichiconti, S. A. Hall, M. Geissler, W. Graham, B.
    Michel, R. Nunes, “Electroless deposition of Cu on glass and patterning
    with microcontact printing”, Langmuir, 19 (2003) 6567.
    87 M. Geissler, H. Kind, P. Schmidt-Winkel, B. Michel, E. Delamarche,
    “Direct patterning of Ni-B on glass substrates using microcontact printing
    and electroless deposition”, Langmuir, 19 (2003) 6283.
    88 Z. C. Liu, Q. G. He, P. Hou, P. F. Xiao, N. Y. He, Z. H. Lu, “Electroless
    plaring of copper through successive pretreatment with silane and colloidal
    silver”, Colloids and Surfaces A: Physicochem. Eng. Aspects, 257-258
    133
    (2005) 283.
    89 D. L. Liu, Z. G. Yang, C. Zhang, “Electroless Ni-Mo-P diffusion barriers
    with Pd-activated self-assembled monolayer on SiO2”, Mater. Sci. Eng. B,
    166 (2010) 67.
    90 S. Sawada, Y. Masuda, P. Zhu, K. Koumoto, “Micropatterning of copper on
    a poly(ethylene terephthalate) substrate modified with a self-assembled
    monolayer”, Langmuir, 22 (2006) 332.
    91 A. Mobius, D. Elbick, E. R. Weidlich, K. Feldmann, F. Schubler, J. Borris,
    M. Thomas, A. Zanker, C. P. Klages, “Plasma-printing and galvanic
    metallization hand in hand – A new technology for the cost-efficient
    manufacture of flexible printed circuits”, Electrochim. Acta, 54 (2009)
    2473.
    92 C. H. Yoon, R. Vittal, J. Lee, W. S. Chae, K. J. Kim, “Enhanced
    performance of a dye-sensitized solar cell with an
    electrodeposited-platinum counter electrode”, Electrochim. Acta, 53 (2008)
    2890.
    93 A. Hauch, A. Georg, “Diffusion in the electrolyte and charge-transfer
    reaction at the platinum electrode in dye-sensitized solar cells”,
    Electrochim. Acta, 46 (2001) 3457.
    94 M. Toivola, J. Halme, K. Miettunen, K. Aitola, P. D. Lund, “Nanostructured
    dye solar cells on flexible substrates - Review”, Int. J. Energy Res., 33
    (2009) 1145.
    95 G. O. Mallory, J. B. Hajdu, Eds., “Electroless plating: Fundamental and
    applications”, American Electroplaters and Surface Finishers Society:
    134
    Orlando, FL, (1990).
    96 T. S. N. Sankara Narayanan, K. Krishnaveni and S. K. Seshadri,
    “Electroless Ni-P/Ni-b duplex coatings: preparation and evaluation of
    microhardness, wear and corrosion resistance”, Mater. Chem. Phys., 82
    (2003) 771.
    97 Y. Gao, Z. J. Zheng, M.Zhu and C. P. Luo, “Microstructure and mechanical
    behavior of porous sintered steels”, Mater. Sci. Eng. A, 381 (2004) 98.
    98 J. Y. Lin, C. Y. Lin, S. K. Liu, C. C. Wan, Y. Y. Wang, “Characterization of
    electroless Ni-based alloys for use in bipolar plates of direct methanol fuel
    cells”, Surf. Coat. Tech., 205 (2010) 2251.
    99 W. J. Dressick, C. S. Dulcey, J. H. Georger, G. S. Calabrese, J. M. Calvert,
    “Covalent binding of Pd catalysts to ligating self-assembled monolayer
    films for selective electroless metal deposition”, J. Electrochem. Soc., 141
    (1994) 210.
    100 H. Kind, A. M. Bittner, O. Cavalleri, K. Kern, “Electroless deposition of
    metal nanoislands on aminothiolate-functionalized Au(111) electrodes”, J.
    Phys. Chem. B, 102 (1998) 7582.
    101 W. J. Dressick, M. S. Chen, S. L. Brandow, “Patterned noncovalent
    binding and metallization of adsorbates in thin film nanocavities”, J. Am.
    Chem. Soc., 122 (2000) 982.
    102 H. Esrom, “Fast selective metal deposition on polymers by using IR and
    excimer VUV photons”, Appl. Surf. Sci., 168 (2000) 1.
    103 Z. Geretovszky, I. W. Boyd, “Kinetic study of 222 nm excimer lamp
    induced decomposition of palladium-acetate films”, Appl. Surf. Sci.,
    135
    138-139 (1999) 401.

    104 C. Peng, S. H. Y. Lo, C. C. Wan, Y. Y. Wang, “Study of the adsorptive
    behavior of Pd/PVP nanoparticles and its interaction with conditioner in
    electroless copper deposition”, Colloids and surfaces A: Physicochem. Eng.
    Aspects, 308 (2007) 93.
    105 R. L. Cohen, J. F. D’Amico, K. W. West, “Mössbauer Study of Tin(II)
    Sensitizer Deposits on Kapton”, J. Electrochem. Soc., 118 (1971) 2042.
    106 E. A. Oster, R. G. Hamilton, N. Miekka, J. R. Henri, S. Maget,
    “Deposition of catalytic noble metals”, US Patent 3423228 (1969).
    107 R. N. Rhoda, R. F. Vines, “Bath and process for Pt and Pt alloys”, US
    patent 3486928 (1969).
    108 F. H. Leaman, “Method and composition of Pt platinum”, US Patent
    3698939 (1972).
    109 C. R. K. Rao, M. Pushpavanam, “Electroless deposition of platinum on
    titanium substrates”, Mater. Chem. Phys., 68 (2001) 62.
    110 A. S. Koslov, T. Palanisamy, D. Narasimhan, “Electroless autocatalytic
    platinum plating”, US Patent 6391477 (2002).
    111 D. J. Diaz, T. L. Williamson, X. Guo, A. Sood, P. W. Bohn, “Electroless
    deposition of gold and platinum for metallization of the intrapore space in
    porous gallium nitride”, Thin Solid Films, 514 (2006) 120.
    112 P. Y. Chen, C. C. Wan, Y. Y. Wang, “The application of electroless pure
    palladium deposition for surface finishing on print circuit boards”, Master
    thesis, National Tsing-Hua University, (2009).
    113 T. R. Hendricks, E. E. Dams, S. T. Wensing, I. Lee, “Effects of catalyst
    136
    introduction methods using PAMAM dendrimers on selective electroless
    nickel deposition on polyelectrolyte multilayers”, Langmuir 23 (2007)
    7404.
    114 Y. Koide, Q. Wang, J. Cui, D. D. Benson, T. J. Marks, “Patterned
    luminescence of organic light-emitting diodes by hot microcontact printing
    (HμCP) of self-assembled monolayers”, J. Am. Chem. Soc., 122 (2000)
    11266.
    115 Y. Kado, A. Aoki, T. Miyashita, “Surface modification using polymer
    Langmuir-Blodgett films”, J. Mater. Sci., 37 (2002) 4839.
    116 H. R. Jhong, D. S. Wong, C. C. Wan, Y. Y. Wang, T. C. Wei, “A novel deep
    eutectic solvent-based ionic liquid used as electrolyte for dye-sensitized
    solar cells”, Electrochem. Commun., 11 (2009) 209.
    117 H. Bonnemann, G. Khelashvili, S. Behrens, A. Hinsch, K. Skupien, E.
    Dinjus, “Role of the platinum nanoclusters in the iodine/triiodine redox
    system of dye solar cells”, J. Clust. Sci., 18 (2006) 141.
    118 R. A. Hatton, S. R. Day, M. A. Chesters, M. R. Willis, “Organic
    electroluminescent devices: enhanced carrier injection using an
    orgnosilane self assembled monolayer (SAM) derivatized ITO electrode”,
    Thin Solid Films, 394 (2001) 292.
    119 S. Besbes, H. B. Ouada, J. Davenas, L. Ponsonnet, N. Jaffrezic, P.
    Alcouffe, “Effect of surface treatment and functionalization on the ITO
    properties for OLEDs”, Mater. Sci. Eng. C, 26 (2006) 505.
    120 S. R. Wasserman, Y. T. Tao, G. M. Whitesides, “Structure and reactivity of
    alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on
    137
    silicon substrates”, Langmuir, 5 (1989) 1074.
    121 M. A. Schneeweiss, H. Hagenstrom, M. J. Esplandiu, D. M. Kolb,
    “Electrolytic metal deposition onto chemically modified electrodes”, Appl.
    Phys. A, 69 (1999) 537.
    122 A. W. Czanderna, D. E. King, D. Spaulding, “Metal overlayers on organic
    functional groups of self-organized molecular assemblies. 1. X-ray
    photoelectron spectroscopy of interactions of Cu/COOH on 11-
    mercaptoundecanoic acid”, J. Vac. Sci. Technol. A, 9 (1991) 2607.
    123 G. C. Herdt, D. R. Jung, A. W. Czanderna, “Weak interactions between
    deposited metal overlayers and organic functional groups of
    self-assembled monolayers”, Prog. Surf. Sci., 50 (1995) 103.
    124 D. L. Angst, G. W. Simmons, “Moisture absorption characteristics of
    organosiloxane self-assembled monolayrs”, Langmuir, 7 (1991) 2236.
    125 Y. F. Wu, B. R. Huang, “Patterning of ITO films on flexible substrates by
    using self-assembled monolayer”, Mater. Lett., 64 (2010) 133.
    126 L. Li, Z. H. He, W. W. Wang, Y. M. Fan, X. P. Mao, D. H. Chen, C. Chen,
    “Synthesis of amino-functionalized epoxy acrylate film by
    magnetic-filtered plasma stream”, Prog. Org. Coat., 56 (2006) 126.
    127 Y. Lin, A. M. Ran, B. Sadanadan, E. A. Kenik, Y. P. Sun, “Functionalizing
    multiple-walled carbon nanotubes with aminopolymers”, J. Phys. Chem. B,
    106 (2002) 1294.
    128 X. Cui, D. A. Hutt, D. J. Scurr, P. P. Conway, “The evolution of Pd/Sn
    catalytic surfaces in electroless copper deposition”, J. Electrochem. Soc.,
    158 (2011) D172.
    138
    129 L. N. Xu, H. F. Xu, K. C. Zhou, A. Q. Xu, Z. Q. Yue, N. Gu, H. Q. Zhang,
    J. Z. Liu, K. J. Chen, “Study on a new activation method for initiating
    electroless plating on alumina powders based on SAMs bonded palladium”,
    Acta Phys. Chim. Sin., 18 (2002) 284.
    130 J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, “Handbook of
    X-ray photoelectron spectroscopy”, Physical Electronics, 1995.
    131 G. Tsekouras, A. J. Mozer, G. G. Wallace, “Enhanced performance of dye
    sensitized solar cells utilizing platinum electrodeposit counter electrodes”,
    J. Electrochem. Soc. 155 (2008) K124.
    132 Y. J. Song, J. K. Oh, K. W. Park, “Pt nanostructure electrodes pulse
    electrodeposited in PVP for electrochemical power sources”,
    Nanotechnology, 19 (2008) 355602.
    133 P. C. Hidber, W. Helbig, E. Kim, G. M. Whitesides, “Microcontact
    printing of palladium colloids: micron-scale patterning by electroless
    deposition of copper”, Langmuir, 12 (1996) 1375.
    134 M. Tan, J. N. Harb, “Additive behavior during copper electrodeposition in
    solution containing Cl-, PEG, and SPS”, J. Electrochem. Soc., 150 (2003)
    C420.
    135 D. Qu, K. Uosaki, “platinum layer formation on a self-assembled
    monolayer by electrochemical deposition”, Chem. Lett., 35 (2006) 258.
    136 A. J. Bard, Electroanalytical Chemistry, vol. 9, Marcel Dekker, 1976.
    137 P. Li, J. Wu, J. Lin, M. Huang, Z. Lan, Q. Li, “Improvement of
    performance of dye-sensitized solar cells based on
    electrodeposited-platinum counter electrode”, Electrochim. Acta, 53 (2008)
    139
    4161.
    138 J. J. Kelly, A. C. West, “Copper deposition in the presence of polyethylene
    glycol”, J. Electrochem. Soc., 145 (1998) 3472.
    139 J. J. Kelly, C. Tian, A. C. West, “Leveling and microstructural effects of
    additives for copper electrodeposition”, J. Electrochem. Soc., 146 (1999)
    2540.
    140 T. P. Moffat, D. Wheeler, D. Josell, “Electrodeposition of copper in the
    SPS-PEG-Cl additive system I. kinetic measurement: Influence of SPS”, J.
    Electrochem. Soc., 151 (2004) C262.
    141 M. Zheng, M. Willey, A. C. West, “Electrochemical nucleation of copper
    on ruthenium : effect of Cl-, PEG, and SPS”, Electrochem. Solid State
    Lett., 8 (2005) C151.
    142 A. Radisic, A. C. West, P. C. Searson, “Influence of additives on
    nucleation and growth of copper on n-Si(111) from acidic sulfate
    solutions”, J. Electrochem. Soc., 149 (2002) C94.
    143 B. Scharifker, G. Hills, “Theoretical and experimental studies of multiple
    nucleation”, Electrochim. Acta, 28 (1983) 879.
    144 Y. S. Ko, Y. U. Kwon, “Electrochemical deposition of platinum on
    fluorine-doped tin oxide: The nucleation mechanisms”, Electrochim. Acta,
    55 (2010) 7276.
    145 M. E. Hyde, R. G. Compton, “A review of the analysis of multiple
    nucleation with diffusion controlled growth”, J. Electroanal. Chem., 549
    (2003) 1.
    146 A. Radisic, J. G. Long, P. M. Hoffmann, P. C. Searson, “Nucleation and

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE