研究生: |
曹淮宇 Chao, Huai-Yu |
---|---|
論文名稱: |
同調光繞射顯微術相位回復演算法之速度優化及於斷層掃描影像重建的應用 Acceleration of Phase Retrieval Algorithms for Coherent Diffraction Imaging and Their Application in Tomographic Reconstruction |
指導教授: |
陳健群
Chen, Chien-Chun |
口試委員: |
蘇紘儀
Su, Hong-Yi 侯敦暉 Hou, Dun-Hui |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 先進光源科技學位學程 Degree Program of Science and Technology of Synchrotron Light Source |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 24 |
中文關鍵詞: | 同調X光繞射 、混合輸入輸出法 、掃描穿透式電子顯微鏡 、斷層影像重建 |
外文關鍵詞: | CDI, HIO, STEM, tomography reconstruction |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在同步輻射光源的持續發展下,同調光繞射顯微術(Coherent Diffraction
Imaging,簡稱 CDI)能夠重建非結晶樣品的結構以供更深入的研究,是一種相當實用的檢測技術。其所使用的重建演算法(Hybrid Input Output Algorithm,簡稱 HIO)由於同時利用了實空間與倒空間的資訊來進行迭代,因此能夠較為精確的重建樣品的結構資訊。
本論文分為兩個部分,第一部分是在 Matlab 環境下對 HIO 算法及其優化版本 GHIO 算法進行優化,大幅降低其重建過程所需花費的時間,並以實例說明優化後的版本在相關研究中能提供大量的幫助,讓研究人員更專注於理論的正確性及實驗的技術提升。
第二部分是將 HIO 應用於進行三維斷層影像的重建,利用 HIO 算法的特性,我們可以獲得相當精準的重建結果。也透過與其他常用的重建算法(FBP 及 ART)比較,說明 HIO 對於投影角度及數量的缺失,以及實驗過程中的雜訊都有相當高的容忍度,非常適合用於高解析度的 STEM 斷層影像的重建。
With the continuous development of synchrotron radiation sources, Coherent Diffraction Imaging (CDI) has become a practical and valuable technique for reconstructing the structures of non-crystalline samples, enabling deeper research insights. The reconstruction algorithm used in CDI, known as the Hybrid Input Output Algorithm (HIO), leverages both real and reciprocal space information during iterations, resulting in more accurate reconstruction of sample structures.
This paper is divided into two parts. The first part focuses on optimizing the HIO algorithm and its improved version, GHIO, in the Matlab environment, significantly reducing the reconstruction time. Examples demonstrate how the optimized version can offer substantial assistance in related research, allowing researchers to concentrate more on theoretical correctness and experimental enhancements.
In the second part, we apply the HIO algorithm to perform three-dimensional tomographic image reconstruction. Exploiting the characteristics of the HIO algorithm, we achieve highly accurate reconstruction results. Comparisons with other commonly used reconstruction algorithms (FBP and ART) reveal HIO's high tolerance to missing projection angles and quantities, as well as experimental noise, making it particularly suitable for high-resolution STEM tomographic image reconstruction.
1. Miao, J., Charalambous, P., Kirz, J. et al. “Extending the methodology of X-ray
crystallography to allow imaging of micrometre-sized non-crystalline specimens”, Nature
400, 1999, pp. 342–344
2. N. J. Chen, Y. W. Tsai, C. C. Chen, “Ensemble Diffraction Microscopy: An Imaging
Technique That Allows High-Resolution Diffraction Imaging Using Both Totally and
Partially Coherent Sources”, IEEE Photonics Journal, VOL. 15, NO. 2, 2023
3. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 1982, 2758-2769
4. Gerchberg, R.W., “A practical algorithm for the determination of phase from image and
diffraction plane pictures”, Optik 35, 1972, 237-246
5. C. C. Chen, “Application of optimization technique to noncrystalline x-ray diffraction
microscopy: Guided hybrid input-output method”, Phys. Rev. B 76, 064113, 2007
6. The MathWorks Inc., MATLAB Version: R2021a Update 4, Natick, Massachusetts, 2021
7. J. Nickolls, I. Buck, M. Garland, K. Skadron, “Scalable Parallel Programming with
CUDA: Is CUDA the parallel programming model that application developers have been
waiting for?”, Queue 6, 2, 2008, 40-53
8. NVIDIA Corporation, NVIDIA Turing GPU Architecture, 2018, p.8
9. Bracewell, Ronald N., Two-Dimensional Imaging, Prentice Hall, Englewood Cliffs, NJ,
1995, pp. 505-537
10. Lim, Jae S., Two-Dimensional Signal and Image Processing, NJ, Prentice Hall,
Englewood Cliffs, 1990, pp. 42-45
24
11. Hansen, P.C., Jørgensen, J.S., “AIR Tools II: algebraic iterative reconstruction methods,
improved implementation”, Numer Algor 79, 2018, pp. 107–137
12. R. Gordon, R. Bender, G.T. Herman, “Algebraic reconstruction techniques for 3
dimensional electron microscopy and X-ray photograph”, J. Theoret. Biol., 29, 1970, pp.
471-481
13. G.N. Hounsfield, “Computericed transverse axial scanning tomography: part I, discription
of the system”, Br. J. Radiol, 46, 1973, pp. 1016-1022
14. G.T. Herman, Fundamentals of Computerized Tomography: Image Reconstruction from
Projections, 2nd ed., Springer, New York, 2009