簡易檢索 / 詳目顯示

研究生: 彭彥霖
Peng, Yen-Lin
論文名稱: 三維可程式邏輯閘陣列互連網路錯誤之通用測試及診斷方法
Application-Independent Testing and Diagnosis of 3-D FPGA Interconnect Faults
指導教授: 吳誠文
Wu, Cheng-Wen
口試委員: 吳誠文
李昆忠
呂學坤
王行健
黃錫瑜
張孟凡
黃婷婷
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 75
中文關鍵詞: 可程式邏輯閘陣列互連網路錯誤測試診斷
外文關鍵詞: FPGA, Interconnect, Fault, Testing, Diagnosis
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有鑒於互補式金屬氧化物半導體因特徵尺寸不斷微縮產生新的挑戰,似乎不可避免的必須讓一個高度整合的系統單晶片從一個較低良率的製程開始製作,再透過大量的時間及努力來改善良率以達到合理的高良率水平,三維積體電路整合技術提供了一個新的方法來克服這些設計上的困難並製造價格低廉且有競爭力的系統單晶片。
    三維積體電路整合技術可以用來減短可程式邏輯閘陣列關鍵路徑的長度,
    一個三維堆疊晶片堆疊數個二維的可程式邏輯閘陣列裸晶粒,並透過穿矽孔及微凸塊做相互連接來達到高封裝密度的目的,然而這個技術同時也帶來了新型的缺陷如穿矽孔的空洞及微凸塊的錯位等,測試這些互連網路的錯誤變得無可避免。在這篇論文中,我們建立了錯誤模型來模擬這些缺陷,根據這些錯誤模型,我們發展了一個錯誤模擬器用來加速錯誤含蓋率的計算,我們提出了一個針對三維可程式邏輯閘陣列互連網路開路、短路及延遲錯誤的自動測試圖樣產生器,這個自動測試圖樣產生器是運用開關陣列拓撲的規律性、有限步階的反覆路徑及繞迴路徑來產生測試路徑,再結合我們所提出的內建式自我測試電路及測試向量,我們可以偵測到互連網路上發生的開路、短路及延遲錯誤。實驗結果顯示,針對不同尺寸的三維可程式邏輯閘陣列,12個測試圖樣已足夠達到100%的開路錯誤含蓋率,偵測所有可能的鄰近短路錯誤,我們需要花費至少40個測試圖樣,而這個數字會隨著三維可程式邏輯閘陣列的高度輕微的增加,我們所提的測試圖樣對可程式邏輯區塊尺寸為50×50×2到50×50×6有很高的延遲錯誤含蓋率(96%),進而說明了我們方法的可延展性。
    為了支持二維及三維可程式邏輯閘陣列的系統,我們提出了一個新的二維可程式邏輯閘陣列延遲錯誤的診斷方案,此方案是以內建式自我測試電路為基礎所開發的,錯誤路徑的位置可以使用改良的內建式自我測試電路找出,這個改良的內建式自我測試電路是將其內部的輸出響應分析器改為掃描串列的形式,因此可以將錯誤資訊用掃描串列的方式傳出來進行分析,再透過對錯誤路徑的分析、錯誤地圖的建立及錯誤線段辨別演算法的使用,我們可以得到可能發生錯誤的線段位置,利用我們所提出的診斷方法可以有效的將真正的錯誤線段找出。我們也提出了一個缺陷錯誤演算法,有效的產生測試路徑來區分單一及成雙缺陷所發生的位置,實驗結果顯示,在一個島形的可程式邏輯閘陣列我們的診斷方法對單一錯誤、成雙錯誤、單一缺陷及成雙缺陷都有很高的診斷解析度。


    In view of the challenges encountered by CMOS scaling, it seems inevitable that a highly integrated system on chip (SOC) must start from low production yield, and then it takes tremendous time and effort to improve the yield to a reasonably high level. Three-dimensional (3-D) integration can provide a means to overcome the difficulties in the design and manufacturing of these SOC products.
    3-D integration has been touted as an approach to reducing the lengths of critical paths in field programmable gate arrays (FPGAs). A 3-D chip stacks a number of 2-D FPGA bare dies, interconnected by through-silicon vias (TSVs) and micro-bumps, to attain a high packing density. However, the technology also introduces new types of defects, such as TSV void and micro-bump misalignment. Testing the interconnection faults becomes inevitable. In this thesis, we establish the fault models to model these defects. Based on these fault models, we develop a fault simulator to speed up the calculation of fault coverage. We present an automatic test pattern generator for open, short, and delay faults on 3-D FPGA interconnects by exploiting the regularity of switch matrix topology and forming repetitive paths with finite steps and with loop-back. Combining the proposed build-in self-test (BIST) circuit and the test vectors, we can detect the target open, short, and delay fault on interconnects. The experimental results show that 12 test patterns suffice to achieve 100% open fault coverage for different size of the 3-D FPGAs. To detect all possible neighboring short faults needs more than 40 test patterns, whose number increases only slightly with height of the 3-D FPGA. The test patterns have high delay fault coverage (96%) for 3-D FPGAs with the number of configurable logic blocks ranging from 50×50×2 to 50×50×6, demonstrating the scalability of our method.
    In support of both 2-D and 3-D FPGA systems, a new BIST-based diagnosis scheme for 2-D FPGA interconnect delay faults is proposed. The faulty paths can be located after configuring the output response analyzer of the BIST circuit as a scan chain. By analyzing the faulty paths, constructing the fault map, and applying the proposed faulty segment identification algorithm, the segment fault candidates can be obtained. The proposed diagnosis scheme can find the effective test paths to locate faulty segment candidates. We also proposed a defect identification algorithm to find the test paths to identify the single and double defects. Experimental results for island-style FPGA show high diagnosis resolution in locating the faulty paths, under the single- and double- fault models caused by single and double defects, respectively.

    1 Introduction 1 1.1 FPGA Architecture 3 1.1.1 Island-style FPGA Architecture 3 1.1.2 Row-style FPGA Architecture 9 1.1.3 Tree-style FPGA Architecture 10 1.2 3-D Integration Technologies 11 1.2.1 Process of Via Formation and Filling 15 1.2.2 Via-First Process 17 1.2.3 Via-Middle Process 18 1.2.4 Front-Side Via-Last Process 19 1.2.5 Backside Via-Last Process 19 1.2.6 Three Stack Types 21 1.3 Organization of the Thesis 23 2 Target Fault Models 24 2.1 Open and Short Faults 24 2.2 Segment Delay Faults 26 3 ATPG for Open and Short Faults 28 3.1 ATPG Flow 28 3.2 Types of Test Paths 29 3.3 Construction of Test Paths and Vectors 32 3.4 Test Pattern Application 34 4 ATPG for Segment Delay Fault 36 4.1 Clock Skew Effects on FPGA Delay Testing 36 4.2 BIST Circuit with Loop-Back PUT 37 4.3 Modified BIST Circuit for WE and NS Switches 40 5 BIST-Based Diagnosis Scheme 44 5.1 Identifying Faulty Segments 44 5.2 Test Path Search for Diagnosis 47 5.2.1 Test Paths for Single Faults 47 5.2.2 Test Paths for Double Faults 49 5.2.3 Test Paths for Single and Double Defects 50 6 Experimental Results 54 6.1 Fault Coverage and Test Time Evaluation 54 6.2 Results of Open and Short Faults 58 6.3 Results of Delay Fault 61 6.4 Results of Diagnosis 64 7 Conclusion and Future Work 68 7.1 Conclusion 68 7.2 Future Work 69

    [1] R. H. Freeman, “Configurable electrical circuit having configurable logic elements and configurable interconnects,” U.S. Patent No. 4,870,302, Sep. 1988.
    [2] Xilinx, “7 Series FPGAs overview,” http://www.xilinx.com/, 2011.
    [3] Altera, “Stratix-5 handbook,” http://www.altera.com/, 2011.
    [4] A. Gayasen, V. Narayanan, M. Kandemir, and A. Rahman, “Designing a 3-D FPGA: switch box architecture and thermal issues,” IEEE Trans. VLSI Systems, vol. 16, no. 7, pp. 882–893, Jul. 2008.
    [5] M. Leeser, W. M. Meleis, M. M. Vai, S. Chiricescu, W. Xu, and P. M. Zavracky, “Rothko: A three-dimensional FPGA,” IEEE Design & Test of Computers, vol. 15, no. 1, pp. 16–23, Jan. 1998.
    [6] C. Dong, D. Chen, S. Haruehanroengra, and W. Wang, “3-D nFPGA: A reconfigurable architecture for 3-D CMOS/nanomaterial hybrid digital circuits,” IEEE Trans. Circuits and Systems I: Fundamental Theory and Applications, vol. 54, no. 11, pp. 2489–2501, Nov. 2007.
    [7] L. Shang, A. Kaviani, and K. Bathala, “Dynamic power consumption in Virtex-II FPGA family,” in Proc. Int. Symp. Field Programmable Gate Arrays, 2002, pp. 157–164.
    [8] M. J. Alexander, J. P. Cohoon, J. L. Colflesh, J. Karro, and G. Robins, “Three-dimensional field-programmable gate arrays,” in Proc. Int. ASIC Conf., 1995, pp. 253–256.
    [9] Y. Chen, J. Zhao, and Y. Xie, “3D-NonFAR: Three-dimensional non-volatile FPGA architecture using phase change memory,” in Proc. Int. Symp. Low-Power Electronics and Design, Aug. 2010, pp. 55–60.
    [10] Y. Y. Liauw, Z. Zhang, W. Kim, A. El Gamal, S. Wong, “Nonvolatile 3D-FPGA with monolithically stacked RRAM-based configuration memory,” in Proc. Int. Solid-State Circuit Conf., Feb. 2012, pp. 406–408.
    [11] R. S. Patti, “Three-Dimensional integrated circuits and future of System- on-Chip designs,” Proc. IEEE, vol. 94, no. 6, pp. 1214–1224, Jun. 2006.
    [12] M. Motoyoshi, “Through-Silicon via (TSV),” Proc. IEEE, vol. 97, no. 1, pp. 43–48, Jan. 2009.
    [13] http://www.itrs.net/Links/2009ITRS/2009Chapters_2009Tables/2009_AAssembl.pdf.
    [14] F. Ye and K. Chakrabarty, “TSV open defects in 3D integrated circuits: characterization, test, and optimal spare allocation,” in Proc. Design Automation Conf., June 2012, pp. 1024–1030.
    [15] M. B. Tahoori and S. Mitra, “Interconnect delay testing of designs on programmable logic devices,” in Proc. Int. Test Conf., Oct. 2004, pp. 635–644.
    [16] D. Das and N. A. Touba, “A low cost approach for detecting, locating, and avoiding interconnect faults in FPGA-based reconfigurable systems,” in Proc. Int. Conf. VLSI Design, Jan. 1999, pp. 266–269.
    [17] I. G. Harris, P. R. Menon, and R. Tessier, “BIST-based delay path testing in FPGA architectures,” in Proc. Int. Test Conf., Nov. 2001, pp. 932–938.
    [18] M. Renovell, “Some aspects of the test generation problem for an application-oriented test of SRAM-based FPGAs,” J. Circuits, Systems, and Computers, vol. 12, no. 2, pp. 143–158, Apr. 2003.
    [19] A. Krasniewski, “Application-dependent testing of FPGA delay faults,” in Proc. EUROMICRO Conf., 1999, pp. 260–265.
    [20] M. Renovell, J. M. Portal, J. Figueras, and Y. Zorian, “Testing the interconnect of RAM-based FPGAs,” IEEE Design & Test of Computers, vol. 15, no. 1, pp. 45–50, Jan.-Mar. 1998.
    [21] M. Abramovici and E. Charles, “BIST-based test and diagnosis of FPGA blocks,” IEEE Trans. VLSI Systems, vol. 9, no. 1, pp. 159–172, Feb. 2001.
    [22] W.-K. Huang, F. J. Meyer, X.-T. Chen, and F. Lombardi, “Testing configurable LUT-based FPGA’s,” IEEE Trans. VLSI Systems, vol. 6, no. 2, pp. 276–283, June 1998.
    [23] M. B. Tahoori and S. Mitra, “Automatic configuration generation for FPGA interconnect testing,” in Proc. VLSI Test Symp., Apr. 2003, pp. 134–139.
    [24] J. Yao, B. Dixon, C. Stroud, and V. Nelson, “System-level built-in self- test of global routing resources in Virtex-4 FPGAs,” in Proc. Southeastern Symp. System Theory, Mar. 2009, pp. 29–32.
    [25] Y.-L. Peng, J.-J. Liou, C.-T. Huang, and C.-W. Wu, “An application- independent delay testing methodology for island-style FPGA,” in Proc. Int. Symp. Defect and Fault Tolerance in VLSI Systems, Oct. 2004, pp. 478–486.
    [26] C.-C. Wang, J.-J. Liou, Y.-L. Peng, C.-T. Huang, and C.-W. Wu, “A BIST scheme for FPGA interconnect delay faults,” in Proc. VLSI Test Symp., May 2005, pp. 201–206.
    [27] S. -K. Lu, H. -C. Wu, S. -J. Yan, and Y. -C. Tsai, “Testing and Diagnosis Techniques for LUT-Based FPGA's,” in Proc. 13th IEEE Asian Test Symp. (ATS), Nov. 2004, pp. 414–419.
    [28] S. Toutounchi and A. Lai, “FPGA test and coverage,” in Proc. Int. Test Conf., Oct. 2002, pp. 599–607.
    [29] P. Girard, O. Heron, S. Pravossoudovitch, and M. Renovell, “Defect analysis for delay-fault BIST in FPGAs,” in Proc. On-Line Testing Symp., July 2003, pp. 124–128.
    [30] M. Abramovici and C. Stroud, “BIST-based delay-fault testing in FPGAs,” in Proc. Int. On-Line Testing Workshop, July 2002, pp. 131–134.
    [31] M. Abramovici, C. Stroud, S. Wijesuriya, and V. Verma, “Using roving STARs for on-line testing and diagnosis of FPGAs in fault-tolerant applications,” in Proc. Int’l Test Conf. (ITC), 1999, pp. 973–982.
    [32] J. Ghosh-Dastidar and N. A. Touba, “Improving diagnostic resolution of delay faults in FPGAs by exploiting reconfigurability,” in Proc. IEEE Int’l Symp. on Defect and Fault Tolerance in VLSI systems (DFT), Oct. 2001, pp. 215–220.
    [33] T. Inoue, S. Miyazaki, and H. Fujiwara, “Universal fault diagnosis for lookup table FPGAs,” IEEE Design & Test of Computers, vol. 15, no. 1, pp. 39–44, Jan.-Mar., 1998.
    [34] S. -J. Wang and C. -N. Huang, “Testing and diagnosis of interconnect structures in FPGAs,” in Proc. 7th Asian Test Symp. (ATS), Nov. 1998, pp. 283–287.
    [35] M. Pedram, B. S. Novandegani, and B. T. Preas, “Architecture and routability analysis for row-based FPGAs,” in Proc. Int. Conf. Computer-Aided Design, Nov. 1993, pp. 230-235.
    [36] J. Greene, V. Roychowdhuri, S. Kaptanoglu, and A. El Gamal, “Segmented channel routing,” in Proc. Design Automation Conf., 1990, pp. 567–572.
    [37] A. El Gamal, J. Greene, J. Reyneri, E. Rogoyski, K. El-Ayat, and A. Mohsen, “An architecture for electrically configurable gate arrays,” IEEE J. Solid-State Circuits, vol. 24, issue 2, pp. 394–398, Apr. 1989.
    [38] Y. -T. Lai and P. -T. Wang, "Hierarchical interconnection structures for field programmable gate arrays", IEEE Trans. VLSI Systems, vol. 5, no. 2, pp. 186–196, Jun. 1997.
    [39] IEEE 1149.1 Standard Test Access Port and Boundary-Scan Architecture. Piscataway: IEEE Standards Department, May 1990.
    [40] IEEE 1532 Standard for In-System Configuration of Programmable Devices. Piscataway: IEEE Standard Department, Dec. 2002.
    [41] V. Betz and J. Rose, “Cluster-based logic blocks for FPGAs: Area-efficiency vs. input sharing and size,” Proc. IEEE Custom Integrated Circuits Conf., 1997, pp. 551–554.
    [42] J. Rose and S. Brown, “Flexibility of interconnection structures for field-programmable gate arrays,” IEEE J. Solid-State Circuits, vol. 26, no. 3, pp. 277–282, Mar. 1991.
    [43] H. -J. Chung et al., “8Gb 3D DDR3 DRAM using through-silicon-via technology,” in Proc. Int. Solid-State Circuit Conf., Feb. 2009, pp. 130–131,131a.
    [44] J. Kim, F. Wang, and M. Nowak, “Method and apparatus for providing through silicon via (TSV) redundancy,” U.S. Patent No. US2010/0295600 A1, Nov. 2010.
    [45] A. -C. Hsieh and T. -T. Hwang, “TSV Redundancy: Architecture and Design Issues in 3D IC,” in Proc. Int. Conf. Design, Automation, and Test in Europe (DATE), March 2010, pp. 166-171.
    [46] M. Nihei, A. Kawabata, T. Murakami, M. Sato, and N. Yokoyama, “Improved thermal conductivity by vertical graphene contact formation for thermal TSV,” in Proc. Int’l Electron Devices Meeting (IEDM), Dec. 2012, pp. 33.5.1–33.5.4.
    [47] C.-W. Pan, Y.-M. Lee, P.-Y. Huang, C.-P. Yang, C.-T. Lin, C.-H. Lee, Y.-F. Chou, and D.-M. Kwai, “I-LUTSim: An iterative look-up table based thermal simulator for 3-D ICs,” in Proc. Asia and South Pacific Design Automation Conf. (ASP-DAC), Jan. 2013, pp. 151–156.
    [48] G. Van der Plas et al., “Design issues and considerations for low-cost 3-D TSV IC technology,” IEEE Jour. of Solid-State Circuits, vol. 46, no. 1, pp. 293–307, Jan. 2011.
    [49] E. J. Marinissen and Y. Zorian, “Testing 3D chips containing through- silicon vias,” in Proc. Int. Test Conf., Nov. 2009, pp. 1–11.
    [50] P. -Y. Chen, C. -W. Wu, and D. -M. Kwai, “On-chip TSV testing for 3D IC before bonding using sense amplification,” in Proc. Asian Test Symp. (ATS), Nov. 2009, pp. 450–455.
    [51] M. Jung, J. Mitra, David Z. Pan, and S. K. Lim, “TSV stress-aware full-chip mechanical reliability analysis and optimization for 3D IC,” in Proc. Design Automation Conf. (DAC), Jun. 2011, pp. 188–193.
    [52] F. Laermer and A. Schilp, “Method of anisotropically etching silicon,” U.S. Patent No. 5,501,893, Mar. 1996.
    [53] F. Laermer and A. Schilp, “Method of anisotropic etching of silicon,” U.S. Patent No. 6,531,068, Mar. 2003.
    [54] M. B. Tahoori and S. Mitra, “Techniques and algorithms for fault grading of FPGA interconnect test configurations,” IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 23, no. 2, pp. 261–272, Feb. 2004.
    [55] W. H. Kautz, “Testing for faults in wiring networks,” IEEE Trans. Computers, vol. 23, no. 4, pp. 358–363, Apr. 1974.
    [56] H.-C. Liao, J.-J. Liou, Y.-L. Peng, C.-T. Huang, and C.-W. Wu, “Delay defect coverage for FPGA test configurations based on statistical evaluation,” in Proc. Int’l Symp. on VLSI Design, Automation and Test (VLSI-DAT), Apr. 2005, pp. 217–220.
    [57] E. S. Park, M. R. Mercer, and T. W. Williams, “The total delay fault model and statistical dealy fault coverage,” IEEE Trans. Computers, vol. 41, no. 6, pp. 688–698, Jun. 1992.
    [58] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathematik, vol. 1, pp. 269–271, 1959.
    [59] P. Sedcole, J. S. Wong, and P. Y. K. Cheung, “Characterisation of FPGA clock variability,” in Proc. IEEE Computer Society Annual Symp. VLSI, Apr. 2008, pp. 322–328.
    [60] Xilinx, “Virtex-5 data sheet,” http://www.xilinx.com/, 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE