研究生: |
陳聖淮 Chen, Sheng-Huai |
---|---|
論文名稱: |
以反鐵磁達成類神經運算突觸可塑性 Antiferromagnet enables Synaptic Meta-plasticity for Neuromorphic Computing |
指導教授: |
賴志煌
Lai, Chih-Huang |
口試委員: |
林秀豪
Lin, Hsiu-Hau 楊朝堯 Yang, Chao-Yao |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 105 |
中文關鍵詞: | 反鐵磁 、自旋軌道矩 、突觸可塑性 、類神經運算 |
外文關鍵詞: | Antiferromagnet, Spin-orbit torque, Synaptic meta-plasticity, Neuromorphic computation |
相關次數: | 點閱:30 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於反鐵磁具有零外露場、兆赫茲的翻轉速度和不易受到外加磁場影響等特性,操控反鐵磁和區分反鐵磁的狀態成為自旋電子學中熱門的研究方向。先前 反鐵磁自旋電子學的研究主要專注在反鐵磁數位以及類比翻轉的行為和讀取反 鐵磁的不同狀態,只有少許的研究強調對比過去元件的優勢。因此這篇論文中 以相對廣泛的方式來研究反鐵磁自旋電子學,從基本的反鐵磁元件翻轉表現, 到在實際上在類神經運算中會使用到的演算法。首先,我們介紹一種新的方式 達成零場翻轉,在這個實驗中,我們排除熱效應所造成面內交換偏壓的建立。 接著,我們發現可以藉由改變反鐵磁的厚度,造成機率性計算和類神經運算轉 換,改變反鐵磁厚度同時也改變手性交互作用和磁區的移動能力,當中我們使 用傳統的 loop-shift 量測方式來獲得 DMI 的強度,還有柯爾顯微鏡來觀察磁區 的穩定度。在最後的研究中,玻璃態多晶反鐵磁與觀察到與時間相依的磁性變 化有關聯,基於在文獻中所使用額外的演算法,當在多工處理時,另一個自由 度:介面上反鐵磁的型態,可以減緩記憶遺失。為了利用我們所觀察到奇特的 反鐵磁特性,這篇論文提供可能的方式來操控反鐵磁,還有連結自旋電子學元 件和實際操作上在軟體工程中用到的功能。
Exploring ways to manipulate antiferromagnet, differentiate antiferromagnetic states become a flourishing topic because of properties of zero stray field, THz dynamics and immune to external field, etc. Previous antiferromagnet spintronics studies have already investigated antiferromagnet switching behaviors (digital and analog switching) and methods of reading. However, few of works stress their advantages over existing devices. Thus, this thesis offers a broader view of antiferromagnet spintronics from fundamental switching analyses to implementing neuromorphic computing based on improved algorithm. We firstly introduce a new method to accomplish spin-orbit torque zero field switching, examined by the domain evolution. In first experiment, we carefully rule out the possibility of exchange bias established by joule heating. Next, we discover probabilistic and neuromorphic computing can be achieved by varying the thickness of antiferromagnetic layer, modifying both chiral interaction and domain mobility. Conventional loop-shift measurement and Kerr microscope are used to extract DMI field and study domain stability, respectively. In the last work, a glassy property in the polycrystalline antiferromagnet is found to be responsible for the origin of metastable states and time- dependent changes. Based on the paper about augmented algorithm of neuromorphic computing with additional degree of freedom, in this thesis: configuration of interfacial spins, can alleviate memory loss when multitasking. In order to utilize these exotic antiferromagnet behaviors, this thesis provides not only possible ways to control and modify the spin texture of antiferromagnet but also bridges the understanding in research levels and programming.
1. Yang, Y. et al. Fieldlike spin-orbit torque in ultrathin polycrystalline FeMn films. Phys. Rev. B 93, 1–14 (2016).
2. Cullity, B. D. & Graham, C. D. Introduction to Magnetic Materials. vol. 4 (John Wiley & Sons, Inc., 2008).
3. Sapozhnik, A. A. et al. Manipulation of antiferromagnetic domain distribution in Mn2Au by ultrahigh magnetic fields and by strain. Phys. Status Solidi - Rapid Res. Lett. 11, 9–12 (2017).
4. Wu, H. et al. Current-induced Néel order switching facilitated by magnetic phase transition. Nat. Commun. 13, 1–7 (2022).
5. Richter, J. The frustrated Heisenberg antiferromagnet: collinear versus noncollinear magnetic ordering. J. Magn. Magn. Mater. 104–107, 505–506 (1992).
6. Thurlings, M. P. H., Van Diepen, A. M. & de Wijn, H. W. Crystal-field effects in the two-dimensional antiferromagnets K2FeF4 and K3Fe2F7. J. Magn. Magn. Mater. 15–18, 637–638 (1980).
7. Zhou, J. et al. Magnetic asymmetry induced anomalous spin-orbit torque in IrMn. Phys. Rev. B 101, 1–11 (2020).
8. Zhou, J. et al. Large spin-orbit torque efficiency enhanced by magnetic structure of collinear antiferromagnet IrMn. Sci. Adv. 5, 22–24 (2019).
9. Hai-Ping, W. et al. The structural, electronic, and magnetic properties of SrFeO n ( n = 2 and 2.5): a GGA+ U study. Chinese Phys. B 18, 5008–5014 (2009).
10. Kohn, A. et al. The antiferromagnetic structures of IrMn 3 and their influence on exchange-bias. Sci. Rep. 3, 1–7 (2013).
11. Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non- collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).
12. Zhang, Y. et al. Strong anisotropic anomalous Hall effect and spin Hall effect in the chiral antiferromagnetic compounds Mn3X (X=Ge, Sn, Ga, Ir, Rh, and Pt). Phys. Rev. B 95, 1–9 (2017).
13. Asa, M. et al. Electrical readout of the antiferromagnetic state of IrMn through anomalous Hall effect. J. Appl. Phys. 128, (2020).
14. Kawamura, H. & Taniguchi, T. Spin Glasses. Handbook of Magnetic Materials vol. 24 (Elsevier Ltd, 2015).
15. Jonason, K., Vincent, E., Hammann, J., Bouchaud, J. P. & Nordblad, P. Memory and Chaos Effects in Spin Glasses. Phys. Rev. Lett. 81, 3243–3246 (1998).
16. Nogués, J. & Schuller, I. K. Exchange bias. J. Magn. Magn. Mater. 192, 203– 232 (1999).
17. Chih-Huang Lai, Matsuyama, H., White, R. L. & Anthony, T. C. Anisotropic exchange for NiFe films grown on epitaxial NiO. IEEE Trans. Magn. 31, 2609– 2611 (1995).
18. Vallejo-Fernandez, G., Kaeswurm, B. & O’Grady, K. Defect and impurity effects in exchange bias systems. J. Appl. Phys. 109, (2011).
19. D’Yakonov, M. I. ; Perel’, V. I. Possibility of Orienting Electron Spins with Current. ZhETF Pis ma Redaktsiiu vol. 13 657 (1971).
20. Lowitzer, S. et al. Extrinsic and intrinsic contributions to the spin hall effect of alloys. Phys. Rev. Lett. 106, 1–4 (2011).
21. Shanavas, K. V., Popović, Z. S. & Satpathy, S. Theoretical model for Rashba spin-orbit interaction in d electrons. Phys. Rev. B - Condens. Matter Mater. Phys. 90, 1–9 (2014).
22. Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin hall effect in semiconductors. Science (80-. ). 306, 1910–1913 (2004).
23. Niimi, Y. et al. Giant spin hall effect induced by skew scattering from bismuth impurities inside thin film CuBi alloys. Phys. Rev. Lett. 109, 1–5 (2012).
24. Khang, N. H. D., Ueda, Y. & Hai, P. N. A conductive topological insulator with
large spin Hall effect for ultralow power spin–orbit torque switching. Nat. Mater. 17, 808–813 (2018).
25. Bose, A. et al. Tilted spin current generated by the collinear antiferromagnet
ruthenium dioxide. Nat. Electron. 5, 267–274 (2022).
26. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous
Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).
27. Nayak, A. K. et al. Large anomalous Hall effect driven by a nonvanishing Berry
curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2, 1–6 (2016).
28. Shao, D. F., Zhang, S. H., Gurung, G., Yang, W. & Tsymbal, E. Y. Nonlinear Anomalous Hall Effect for Néel Vector Detection. Phys. Rev. Lett. 124, 67203(2020).
29. You, Y. et al. Anomalous Hall Effect–Like Behavior with In-Plane Magnetic Field in Noncollinear Antiferromagnetic Mn 3 Sn Films. Adv. Electron. Mater. 5, 1–6 (2019).
30. Bihlmayer, G., Rader, O. & Winkler, R. Focus on the Rashba effect. New J. Phys. 17, (2015).
31. Shao, Q. et al. Strong Rashba-Edelstein Effect-Induced Spin-Orbit Torques in Monolayer Transition Metal Dichalcogenide/Ferromagnet Bilayers. Nano Lett. 16, 7514–7520 (2016).
32. Dzyaloshinsky, I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958).
33. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).
34. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature vol. 476 189–193 (2011).
35. Liu, L. et al. Spin-torque switching with the giant spin hall effect of tantalum. Science (80-. ). 336, 555–558 (2012).
36. Avci, C. O. et al. Fieldlike and antidamping spin-orbit torques in as-grown and annealed Ta/CoFeB/MgO layers. Phys. Rev. B - Condens. Matter Mater. Phys. 89, 1–13 (2014).
37. Skrotskii, G. V. The Landau-Lifshitz equation revisited The Landau-Lifshitz equation revisited. 977, 10–13.
38. Miron, I. M. et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat. Mater. 9, 230–234 (2010).
39. Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrman, R. A. Current- induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin hall effect. Phys. Rev. Lett. 109, 1–5 (2012).
40. Pai, C.-F., Mann, M., Tan, A. J. & Beach, G. S. D. Determination of spin torque efficiencies in heterostructures with perpendicular magnetic anisotropy. Phys. Rev. B 93, 144409 (2016).
41. Baibich, M. N. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).
42. Chen, H. Y., Feng, Y. J. & Su, C. Giant magnetic tunneling effect in 81NiFe/Al2O3/Fe junction. Chinese Phys. Lett. 14, 213–216 (1997).
43. Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989).
44. Ruderman, M. A. & Kittel, C. Indirect exchange coupling of nuclear magnetic moments by conduction electrons. Phys. Rev. 96, 99–102 (1954).
45. Julliere, M. Tunneling between ferromagnetic films. Phys. Lett. A 54, 225–226 (1975).
46. Mcguire, T. R. & Potter, R. I. Anisotropic Magnetoresistance in Ferromagnetic 3D Alloys. IEEE Trans. Magn. 11, 1018–1038 (1975).
47. Wadley, P. et al. Spintronics: Electrical switching of an antiferromagnet. Science (80-. ). 351, 587–590 (2016).
48. Nakayama, H. et al. Spin Hall Magnetoresistance Induced by a Nonequilibrium Proximity Effect. Phys. Rev. Lett. 110, 1–5 (2013).
49. Oda, K., Moriyama, T. & Ono, T. Magnetoresistance in bilayers of heavy metal and non-collinear antiferromagnet. J. Magn. Soc. Japan 43, 1–5 (2019).
50. Fukami, S., Anekawa, T., Zhang, C. & Ohno, H. A spin-orbit torque switching scheme with collinear magnetic easy axis and current configuration. Nat. Nanotechnol. 11, 621–625 (2016).
51. Fukami, S., Zhang, C., Duttagupta, S., Kurenkov, A. & Ohno, H. Magnetization switching by spin-orbit torque in an antiferromagnet-ferromagnet bilayer system. Nat. Mater. 15, 535–541 (2016).
52. Oh, Y. W. et al. Field-free switching of perpendicular magnetization through spin-orbit torque in antiferromagnet/ferromagnet/oxide structures. Nat. Nanotechnol. 11, 878–884 (2016).
53. Akyol, M. et al. Current-induced spin-orbit torque switching of perpendicularly magnetized Hf|CoFeB|MgO and Hf|CoFeB|TaOx structures. Appl. Phys. Lett. 106, (2015).
54. Chen, W., Qian, L. & Xiao, G. Deterministic Current Induced Magnetic Switching Without External Field using Giant Spin Hall Effect of β-W. Sci. Rep. 8, 1–8 (2018).
55. Chuang, T. C., Pai, C. F. & Huang, S. Y. Cr-induced Perpendicular Magnetic Anisotropy and Field-Free Spin-Orbit-Torque Switching. Phys. Rev. Appl. 11, 1 (2019).
56. Kang, M. G. et al. Electric-field control of field-free spin-orbit torque switching via laterally modulated Rashba effect in Pt/Co/AlOx structures. Nat. Commun. 12, 8–15 (2021).
57. Hu, S. et al. Efficient perpendicular magnetization switching by a magnetic spin Hall effect in a noncollinear antiferromagnet. Nat. Commun. 13, 1–7 (2022).
58. Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).
59. Godinho, J. et al. Electrically induced and detected Néel vector reversal in a collinear antiferromagnet. Nat. Commun. 9, 1–8 (2018).
60. Ielmini, D. & Wong, H. S. P. In-memory computing with resistive switching devices. Nat. Electron. 1, 333–343 (2018).
61. Chiang, C. C., Huang, S. Y., Qu, D., Wu, P. H. & Chien, C. L. Absence of evidence of electrical switching of the antiferromagnetic néel vector. Phys. Rev. Lett. 123, 1–5 (2019).
62. DuttaGupta, S. et al. Spin-orbit torque switching of an antiferromagnetic metallic heterostructure. Nat. Commun. 11, 1–8 (2020).
63. Bodnar, S. Y. et al. Writing and reading antiferromagnetic Mn2Au by Neél spin- orbit torques and large anisotropic magnetoresistance. Nat. Commun. 9, 1–7 (2018).
64. Cheng, Y., Yu, S., Zhu, M., Hwang, J. & Yang, F. Electrical Switching of Tristate Antiferromagnetic Néel Order in α-Fe2 O3 Epitaxial Films. Phys. Rev. Lett. 124, 27202 (2020).
65. Chen, X. Z. et al. Antidamping-Torque-Induced Switching in Biaxial Antiferromagnetic Insulators. Phys. Rev. Lett. 120, 1–6 (2018).
66. Tsai, H. et al. Electrical manipulation of a topological antiferromagnetic state. Nature 580, 608–613 (2020).
67. Takeuchi, Y. et al. Chiral-spin rotation of non-collinear antiferromagnet by spin– orbit torque. Nat. Mater. 20, 1364–1370 (2021).
68. Higo, T. et al. Perpendicular full switching of chiral antiferromagnetic order by current. Nature 607, 474–479 (2022).
69. Wadley, P. et al. Control of antiferromagnetic spin axis orientation in bilayer Fe/CuMnAs films. Sci. Rep. 7, 1–6 (2017).
70. Bodnar, S. Y. et al. Magnetoresistance Effects in the Metallic Antiferromagnet Mn2Au. Phys. Rev. Appl. 14, 1–6 (2020).
71. Bommanaboyena, S. P. et al. Readout of an antiferromagnetic spintronics system by strong exchange coupling of Mn2Au and Permalloy. Nat. Commun. 12, 1–7 (2021).
72. Wang, W. G., Li, M., Hageman, S. & Chien, C. L. Electric-field-assisted switching in magnetic tunneljunctions. Nat. Mater. 11, 64–68 (2012).
73. Chen, X. et al. Electric field control of Néel spin–orbit torque in an antiferromagnet. Nat. Mater. 18, 931–935 (2019).
74. Kuo, C. Y . et al. Photonic-Crafting of Non-V olatile and Rewritable Antiferromagnetic Spin Textures with Drastic Difference in Electrical Conductivity. Adv. Mater. 34, 1–8 (2022).
75. Gray, I. et al. Spin Seebeck Imaging of Spin-Torque Switching in Antiferromagnetic Pt/NiO Heterostructures. Phys. Rev. X 9, 41016 (2019).
76. Reichlova, H. et al. Imaging and writing magnetic domains in the non-collinear antiferromagnet Mn3Sn. Nat. Commun. 10, (2019).
77. Gross, I. et al. Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer. Nature 549, 252–256 (2017).
78. Chauleau, J. Y., Haltz, E., Carrétéro, C., Fusil, S. & Viret, M. Multi-stimuli manipulation of antiferromagnetic domains assessed by second-harmonic imaging. Nat. Mater. 16, 803–807 (2017).
79. Hoogeboom, G. R., Aqeel, A., Kuschel, T., Palstra, T. T. M. & Van Wees, B. J. Negative spin Hall magnetoresistance of Pt on the bulk easy-plane antiferromagnet NiO. Appl. Phys. Lett. 111, (2017).
80. Baldrati, L. et al. Full angular dependence of the spin Hall and ordinary magnetoresistance in epitaxial antiferromagnetic NiO(001)/Pt thin films. Phys. Rev. B 98, 1–9 (2018).
81. Park, B. G. et al. A spin-valve-like magnetoresistance of an antiferromagnet- based tunnel junction. Nat. Mater. 10, 347–351 (2011).
82. Chmiel, F. P. et al. Observation of magnetic vortex pairs at room temperature in a planar α-Fe2O3/Co heterostructure. Nat. Mater. 17, 581–585 (2018).
83. Schmitt, C. et al. Identification of Neél Vector Orientation in Antiferromagnetic Domains Switched by Currents in Ni O/Pt Thin Films. Phys. Rev. Appl. 15, 1 (2021).
84. Moriyama, T., Oda, K., Ohkochi, T., Kimata, M. & Ono, T. Spin torque control of antiferromagnetic moments in NiO. Sci. Rep. 8, 1–6 (2018).
85. Schäfer, R. & McCord, J. Magneto-Optical Microscopy. in Magnetic Measurement Techniques for Materials Characterization 171–229 (Springer International Publishing, 2021). doi:10.1007/978-3-030-70443-8_9.
86. Higo, T. et al. Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal. Nat. Photonics 12, 73–78 (2018).
87. Schreiber, F. et al. Concurrent magneto-optical imaging and magneto-transport readout of electrical switching of insulating antiferromagnetic thin films. Appl. Phys. Lett. 117, (2020).
88. Van Der Heijden, P. A. A. et al. Thermally assisted reversal of exchange biasing in NiO and FeMn based systems. Appl. Phys. Lett. 72, 492–494 (1998).
89. Paetzold, A. & Röll, K. Thermally activated self-alignment of exchange coupling in NiO/NiFe bilayers. J. Appl. Phys. 91, 7748–7750 (2002).
90. Xi, H., Franzen, S., Mao, S. & White, R. M. Exchange bias relaxation in reverse magnetic fields. Phys. Rev. B - Condens. Matter Mater. Phys. 75, 1–5 (2007).
91. He, X. et al. Robust isothermal electric control of exchange bias at room temperature. Nat. Mater. 9, 579–585 (2010).
92. Lin, P. H. et al. Manipulating exchange bias by spin–orbit torque. Nat. Mater. 18, 335–341 (2019).
93. Peng, S. et al. Exchange bias switching in an antiferromagnet/ferromagnet bilayer driven by spin–orbit torque. Nat. Electron. 3, 757–764 (2020).
94. Stebliy, M. E. et al. Current-Induced Manipulation of the Exchange Bias in a Pt/Co/NiO Structure. ACS Appl. Mater. Interfaces 13, 42258–42265 (2021).
95. Huang, K. F., Wang, D. S., Tsai, M. H., Lin, H. H. & Lai, C. H. Initialization- Free Multilevel States Driven by Spin–Orbit Torque Switching. Adv. Mater. 29, (2017).
96. Kurenkov, A. et al. Artificial Neuron and Synapse Realized in an Antiferromagnet/Ferromagnet Heterostructure Using Dynamics of Spin–Orbit Torque Switching. Adv. Mater. 31, (2019).
97. Yun, J. et al. Tailoring Multilevel-Stable Remanence States in Exchange-Biased System through Spin-Orbit Torque. Adv. Funct. Mater. 30, 1–8 (2020).
98. Song, K. M. et al. Skyrmion-based artificial synapses for neuromorphic computing. Nat. Electron. 3, 148–155 (2020).
99. Park, H. L. et al. Flexible Neuromorphic Electronics for Computing, Soft Robotics, and Neuroprosthetics. Adv. Mater. 32, (2020).
100. Ohno, T. et al. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 10, 591–595 (2011).
101. Mishra, R., Kumar, D. & Yang, H. Oxygen-Migration-Based Spintronic Device Emulating a Biological Synapse. Phys. Rev. Appl. 11, 1 (2019).
102. Laborieux, A., Ernoult, M., Hirtzlin, T. & Querlioz, D. Synaptic metaplasticity in binarized neural networks. Nat. Commun. 12, 1–12 (2021).
103. Evans, R. F. L. et al. Atomistic spin model simulations of magnetic nanomaterials. J. Phys. Condens. Matter 26, (2014).