研究生: |
林維謙 Lin, Wei-Chien |
---|---|
論文名稱: |
應用CMOS-MEMS製程於具溝槽結構之雙邊變形薄膜電容式壓力感測器的設計與實現 Sensitivity Improvement for CMOS-MEMS Capacitive Pressure Sensor Using Double Deformable Diaphragms with Trenches |
指導教授: |
方維倫
Fang, Weileum |
口試委員: |
李昇憲
Li, Sheng-Shian 蘇旺申 Su, Wang-Shen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 103 |
中文關鍵詞: | CMOS-MEMS 、壓力感測器 、Parylene-C 、抗彎剛度 |
外文關鍵詞: | CMOS-MEMS, Pressure sensor, Parylene-C, Flexural rigidity |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要為利用TSMC 0.18µm 1P6M CMOS製程平台,搭配金屬濕蝕刻製程以及高分子沉積封腔製程來完成電容式絕對型氣壓壓力感測器。本元件的主要設計目的為,運用電容式壓力感測器具有高靈敏度的特色來達成壓力感測,估計可有效發揮於手機或是平板等個人隨行助理系統上。
本電容式壓力感測器的設計特色有四:(1)設計雙邊感測的變形薄膜來改良一般的傳統電容式壓力感測器,(2)利用不同堆疊厚度的金屬犧牲層,經過金屬濕蝕刻後完成兩種不同寬度的空腔結構;(3)同時在薄膜邊緣設計溝槽結構來改變感測器薄膜的抗彎剛度,使其薄膜變形程度可以進一步的增加,(4)最後沉積高分子材料(Parylene-C)來完成封閉空腔,實現壓力感測器元件之設計。
In this study, we present a new high sensitivity absolute capacitive pressure sensor that it is estimated to exert on your phone or tablet and other personal assistant system. The design features of this capacitive pressure sensor are coating Parylene-C to accomplish two kinds of chambers and using double deformable sensing diaphragms to enhance sensor’s sensitivity. Besides the double deformable sensing diaphragms, the use of trenches can also improve the sensitivity of capacitive pressure sensor by reducing diaphragm’s flexural rigidity. The structure of pressure sensor was made through TSMC 0.18µm 1P6M CMOS-MEMS process. Not only we can effectively use the multilayer film stack features to complete the study, but also we put forward the possibility to develop other pressure sensors by using this CMOS-MEMS platform.
[1] Richard P. Feynman, “There's Plenty of Room at the Bottom,” California Institute of Technology, 1959
[2] Garmin, from http://www.garmin.com.tw/products/oem/?cat=oem
[3] Apple, from http://www.apple.com/tw/iphone/
[4] Sony, from https://asia.playstation.com/
[5] Vine, from https://www.vive.com/
[6] J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface Micromachining for Microelectromechanical Systems,” Proceedings of the IEEE, VOL. 86, pp.1552-1574, 1998
[7] G. T. A. Kovacs, N. I. Maluf, and K. E. Petersen, “Bulk Micromachining of Silicon,” Proceedings of the IEEE, VOL. 86, pp.1536-1551, 1998
[8] M. Y. Afridi, J. S. Suehle, M. E. Zaghloul, , D. W. Berning, A. R. Hefner, R. E. Cavicchi, S. Semancik, C. B. Montgomery, and C. J. Taylor, “A Monolithic CMOS Microhotplate-Based Gas Sensor System,” IEEE Sensors Journal, VOL. 2, pp. 644 - 655, 2002
[9] C.-Z. Wei, W. Zhou, Q. Wang, and X. Li, “Monolithic pressure+acceleration sensor with self-test function for reliable & low-cost tire-pressure-monitoring-system (TPMS) applications,” Transducers, Beijing, China, June 5-9, 2011, pp. 1006-1009
[10] Y.-C. Sun, K.-C. Liang, C.-L. Cheng, M.-Y. Lin, R.-S. Chen, and W. Fang, “Performace improvement of CMOS-MEMS pirani vacuum gauge with hollow heater design,” Transducers, Anchorage, Alaska, USA, June 21-25, 2015, pp. 1069-72
[11] T.-Y. Tu, Paul C.-P. Chao, and Y.-P. Lee, “A new non-invasive cuff-less blood pressure sensor,” IEEE Sensors, Baltimore, MD, USA, November 3-6, 2013, pp. 1-4
[12] Yole Developpement, from http://www.yole.fr/
[13] IndustryARC, from http://industryarc.com/
[14] Yole Developpement, from http://www.yole.fr/
[15] Bosch BMP280, datasheet
[16] Yole Developpement, from http://www.yole.fr/
[17] Apple, from http://www.apple.com/tw/watch/
[18] Bosch, from https://www.bosch-sensortec.com/
[19] Grand View Research, from http://www.grandviewresearch.com/
[20] Charles S. Smith, “Piezoresistance Effect in Geruianium and Silicon,” Physical Review, VOL. 94, 1953
[21] Samaun, K. D. Wise, and J. B. Angell, “An IC Piezoresistive Pressure Sensor for Biomedical Instrumentation,” IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. BME-20, pp. 101-109, 1973
[22] K. H.-L. Chau, C. D. Fung, P. R. Harris, and G. A. Dahrooge, “A Versatile Polysilicon Diaphragm Pressure Sensor Chip,” IEEE International Electron Devices Meeting (IEDM), 91,pp. 761-764, 1991
[23] H. Sandmaier and K. Kuhl, “A Square-Diaphragm Piezoresistive Pressure Sensor with a Rectangular Central Boss for Low-Pressure Ranges,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 40, pp. 1754-1759, 1993
[24] Å. Sandvand, E. Halvorsen, K. E. Aasmundtveit, and H. Jakobsen, “Influence of Sensor-Package Hermeticity-Level on Long-Term Drift for a Piezoresistive MEMS Pressure-Sensor,” European Microelectronics Packaging Conference, pp. 1-5, 2015
[25] C. H. Je, C. A. Choi, S. Q. Lee, and W. S. Yang, “Surface Micromachined Pressure Sensor with Internal Substrate Vacuum Cavity,” ETRI Journal, VOL. 38, pp. 685-694, 2016
[26] D.-W. Lee, and Y.-S. Choi, “A novel pressure sensor with a PDMS diaphragm,” Microelectronic Engineering, VOL. 85, pp. 1054-1058, 2008
[27] C.-M. Lin, L.-Y. Lin, and W. Fang, “Monolithic Integration of Carbon Nanotubes Based Physical Sensors,” IEEE International Conference on Micro Electro Mechanical Systems, Hong Kong, China, January 24-28, 2010, pp. 55-58
[28] H.-H. Wang, C.-W. Hsu, W.-H. Liao, L.-J. Yang and C.-L. Dai, “Micro Pressure Sensors of 50µm Size Fabricated by A Standard CMOS Foundry and A Novel Post Process,” IEEE International Conference on Micro Electro Mechanical Systems, Istanbul, Turkey, January 22-26, 2006, pp. 578-581
[29] M.-H. Tsai, C. Wang, C.-M. Sun, and W. Fang, “A Novel Out-of-plane Accelerometers with Fully-differential Sensing Circuit and Sub-micron gap,” Transducers, Lyon, France, June 10-14, 2007, pp. 1487-1490
[30] V. P.-J. Chung, C.-L. Cheng, M.-C. Yip, and W. Fang, “A CMOS Capacitive Vertical-parallel-plate-array Humidity Sensor with Rf-aerogel Fill-in for Sensitivity and Response Time Improvement,” IEEE International Conference on Micro Electro Mechanical Systems, Estoril, Portugal, January 18-22, 2015, pp. 767-770,
[31] T. Fujimori, H. Takano, S. Machida, and Y. Goto, “Tiny (0.72 mm2) pressure sensor integrating MEMS and CMOS LSI with back-end-of-line MEMS platform,” Transducers, Denver, CO, USA, June 21-25, 2009, pp. 1924-1927
[32] C.-M. Sun, C. Wang, M.-H. Tsai, H.-S. Hsieh, and W. Fang, “Monolithic integration of capacitive sensors using a double-side CMOS MEMS post process,” J. Micromech. Microeng., VOL. 19, 015023, 2009
[33] N. Narducci, Y.-C. Liu, W. Fang, and J. Tsai, “CMOS MEMS capacitive absolute pressure sensor,” J. Micromech. Microeng., VOL. 23, 055007, 2013
[34] C.-L. Cheng, H.-C. Chang, C.-I. Chang, Y.-T. Tuan, and W. Fang, “Mechanical force-displacement transduction structure for performance enhancement of CMOS-MEMS pressure sensor,” IEEE International Conference on Micro Electro Mechanical Systems, San Francisco, CA, USA, January 26-30, 2014, pp. 757–760
[35] C.-L. Cheng, H.-C. Chang, C.-I. Chang and W. Fang, “Development of a CMOS MEMS pressure sensor with a mechanical force displacement transduction structure,” J. Micromech. Microeng., VOL. 25, 125024, 2015
[36] Eswaran P, and Malarvizhi S, “MEMS Capacitive Pressure Sensors: A Review on Recent Development and Prospective,” International Journal of Engineering and Technology, VOL. 5, pp. 2734-2746, 2013
[37] Y. S. Lee, and K. D. Wise, “A batch-fabricated silicon capacitive pressure transducer with low temperature sensitivity,” IEEE Transactions on Electron Devices, VOL. ED-29, pp. 42-48 ,1982
[38] D.-S. Nguyen, P. Pillatsch, Y. Zhu, I. Paprotny, P. K. Wright, and R. D. White, “MEMS-based Capacitive Pressure Sensors with Pre-stressed Sensing Diaphragms,” IEEE Sensors, Busan, South Korea, November 1-4, 2015, pp. 1-4
[39] Y. Zhang, R. Howver, B. Gogoi, and N. Yazdi, “A High-sensitive Ultra-thin Mems Capacitive Pressure Sensor,” Transducers, Beijing, China, June 5-9, 2011, pp. 112-115
[40] C. Walk, A. Goehlich, A. Giese, M. Goertz, H. Vogt, and M. Kraft, “Investigation of Diaphragm Deflection of an Absolute MEMS Capacitive Polysilicon Pressure Sensor,” Proc. SPIE Microtechnologies, VOL. 9517, 2015
[41] X. Luo, and Y. B Gianchandani, “A 100 μm diameter capacitive pressure sensor with 50 MPa dynamic range,” J. Micromech. Microeng., VOL. 26, 045009, 2016
[42] W. Sim, B. Kim, B. Choi, and J.-O. Park, “Theoretical and experimental studies on the parylene diaphragms for microdevices,” Microsystem Technologies, VOL. 11, pp. 11-15, 2005
[43] S.-H. Tseng, “Design and Implementation of a CMOS-MEMS Altimeter,” master thesis, National Tsing Hua University, Hsinchu, Taiwan, 2012
[44] W. H. Ko, “Solid-state capacitive pressure transducers,” Sensors and Actuators, 10, pp. 303–320, 1986
[45] R. Puers, “Capacitive sensors: when and how to use them,” Sensors and Actuators A, 37-38, pp. 93-105, 1993
[46] CIC, from https://www.cic.org.tw/main.jsp
[47] Bosch BMP085, datasheet
[48] NXP MPL3115A2, datasheet
[49] HopeRF HP203B, datasheet
[50] Infineon KP234, datasheet
[51] S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells. 2nd Ed., New York, NY: McGraw-Hill, 1995
[52] M. Shahiri-Tabarestani, B. A. Ganji, and R. Sabbaghi-Nadooshan, “Design and Simulation of High Sensitive Capacitive Pressure Sensor with Slotted Diaphragm,” International Conference on Biomedical Engineering (ICoBE), pp. 484-489, 2012
[53] PARA TECH Parylene-C, datasheet
[54] J. Rion, “Ultra-Light Photovoltaic Composite Sandwich Structures,” PhD thesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, 2008.
[55] H. Kapels, R. Aigner, and C. Kolle, “Monolithic Surface-Micromachined Sensor System for High Pressure Applications,” Transducers' 01 Eurosensors XV, Munich, Germany, June 10-14, 2001, pp. 56-59,
[56] G. K. Fedder, “CMOS-Based Sensors,” IEEE Sensors, pp. 125-128, 2005
[57] Polymer Deposition System (PDS), datasheet
[58] WYKO NT1100, datasheet
[59] J. L. de Segovia, “Physics of outgassing,” CERN Accelerator School: Vacuum Technology, pp. 99-110, 1999
[60] C.-L. Cheng, M.-H. Tsai and W. Fang, “Determining the thermal expansion coefficient of thin films for a CMOS MEMS process using test cantilevers,” J. Micromech. Microeng., VOL. 25, 025024, 2015
[61] Linkam Ltd, THMS600, datasheet
[62] W. H. Ko, and Q. Wang, “Touch mode capacitive pressure sensors,” Sensors and Actuators, 75, pp. 242–251, 1999
[63] T. Pedersena, G. Fragiacomoa, O. Hansena, and, E.V. Thomsena, “Highly sensitive micromachined capacitive pressure sensor with reduced hysteresis and low parasitic capacitance,” Sensors and Actuators A: Physical, 154, pp. 35-41, 2009