簡易檢索 / 詳目顯示

研究生: 林軒丞
Lin, Hsuan-Cheng
論文名稱: 微機電壓電加速計性能優化與振動感測模組開發
Device Performance Optimization and Vibration Sensing Module Development for Piezoelectric MEMS Accelerometer
指導教授: 李昇憲
Li, Sheng-Shian
口試委員: 邱一
Chiu, Yi
方維倫
Fang, Wei-Leun
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 80
中文關鍵詞: 壓電式加速度計壓電材料氮化鋁振動感測模組
外文關鍵詞: Piezoelectric accelerometer, Piezoelectric material, Aluminum nitride (AlN), Vibration sensing module
相關次數: 點閱:32下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在開發振動感測模組,利用實驗室開發之氮化鋁壓電製程製作微機電加速度計元件。研究主要聚焦於元件結構設計,改良加速度計典型結構,透過側質量設計、錐型樑設計及設計參數最佳化三個階段優化元件性能,並利用性能係數 (FOM) 綜合比較不同設計。在設計參數最佳化階段,本研究根據工具機應用設定相關規格限制,並以三軸靈敏度為目標函式進行求解,得出最佳設計參數組合。
    將加速度計元件、電路板及金屬外殼組裝成振動感測模組後,使用雷射都卜勒測振儀 (LDV)、振動機系統 (Shaker system)、訊號分析儀 (Signal analyzer) 進行結構共振頻率、靈敏度、雜訊密度等性能測試,比較優化前後元件性能表現。首先量測元件結構共振頻率,測試結果顯示,優化前後結構的共振頻率分別為19 kHz和19.5 kHz。
    隨後量測類比單軸振動感測模組各項性能。結果顯示,優化後元件的靈敏度為88.40 mV/g,比典型結構的54.78 mV/g增加了61%,雜訊密度為355 µg/√Hz,顯著低於典型設計的729 µg/√Hz,且兩者線性度均表現良好。
    進一步將單軸模組延伸至三軸振動感測模組,測試結果顯示,優化後元件z軸靈敏度達55.01 mV/g,比典型結構的29.77 mV/g增加了84 %,雜訊密度分別為713 µg/√Hz和940 µg/√Hz;優化後元件x軸靈敏度為13.8220 mV/g,比典型結構的13.1984 mV/g增加了5 %,雜訊密度分別為2150 µg/√Hz和2683 µg/√Hz。而優化後的元件交叉軸靈敏度均小於典型設計,且三軸輸出訊號均呈高度線性。
    本研究目的在於開發振動感測模組,並將其整合微控制器 (MCU),以實現振動訊號的數位輸出。透過MCU內建的高精度ADC萃取三軸加速度計訊號,再透過UART介面與電腦進行通信。數位訊號將由本研究開發的使用者介面 (GUI) 顯示,該介面可實時 (Real-time) 顯示三軸振動訊號,並具備時域與頻域訊號分析功能,實現振動監測的目的。


    This study aims to develop a vibration sensing module by utilizing in-house aluminum nitride piezoelectric process to fabricate MEMS accelerometer. This research focus on the accelerometer structure design, enhancing the typical structure of piezoelectric accelerometers through three stages: side mass design, tapered beam design, and design parameter optimization. The performance of different designs is compared using the figure of merit (FOM). During the design parameter optimization phase, we set relevant specifications based on machine tool applications as constraints and define three-axis sensitivity as the objective function to derive the optimal design parameter combination.
    After assembling the accelerometer component, circuit board, and metal case into the vibration sensing module, performance tests were conducted using the LDV, shaker system, and signal analyzer. These tests measured structural resonance frequency, sensitivity, and noise density to compare the performance before and after optimization. The measurements of the structural resonance frequency showed that the resonance frequencies were 19 kHz and 19.5 kHz for the structures before and after optimization, respectively.
    Subsequently, we tested the analog single-axis vibration sensing module. The results indicate that the sensitivity of the optimized component is 88.40 mV/g, representing an approximate 61% increase compared to the 54.78 mV/g of the typical structure. The noise density of the optimized structure is 355 µg/√Hz, significantly lower than the 729 µg/√Hz observed in the typical design. Both structures exhibit excellent linearity.
    The study further extended the single-axis module to a three-axis vibration sensing module. Test results showed that the optimized component had a z-axis sensitivity of 55.01 mV/g, an 84% increase compared to the 29.77 mV/g of the typical structure, with noise densities of 713 µg/√Hz and 940 µg/√Hz, respectively. The x-axis sensitivity was 13.8220 mV/g, a 5% increase over the typical structure's 13.1984 mV/g, with noise densities of 2150 µg/√Hz and 2683 µg/√Hz, respectively. The cross axis sensitivity of optimized structure was lower than that of the typical design, and the three-axis output signals exhibited high linearity under different acceleration environments.
    Additionally, this study realizes a three-axis vibration sensing module for digital output using a microcontroller (MCU). The high-precision ADC built into the MCU extracts three-axis accelerometer signals, which are communicated to a computer via a UART interface. The digital signals are displayed in real-time by a graphic user interface (GUI) developed in this study, featuring both time-domain and frequency-domain signal analysis capabilities, achieving the goal of vibration monitoring.

    摘要 I 目錄 VI 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與背景 2 1.3 文獻回顧 4 第二章 元件設計與原理介紹 9 2.1 壓電效應 9 2.2 壓電加速度計簡介 10 2.3 壓電加速度計模型 10 2.4 元件設計 14 2.4.1 結構設計 15 2.4.2 電極區設計 16 2.4.3 典型z軸加速度計 18 2.4.4 第一階段: 側質量塊設計 20 2.4.5 第二階段: 錐形樑設計 23 2.4.6 性能係數分析 (Figure of merit, FOM) 26 2.4.7 第三階段: 設計參數最佳化 28 第三章 元件製程 36 第四章 介面電路與模組開發 40 4.1 介面電路 40 4.2 模組系統方塊圖 42 4.3 韌體程式開發 43 4.4 使用者介面 47 第五章 模組成品與量測結果 49 5.1 加速度計結構共振頻率 49 5.2 類比單軸振動模組成品 52 5.3 類比單軸振動模組量測 55 5.3.1 頻率響應與靈敏度 56 5.3.2 時域訊號與雜訊密度 56 5.3.3 線性度 56 5.4 數位三軸振動感測模組成品 61 5.5 三軸振動感測模組量測 63 5.5.1 頻率響應與靈敏度 65 5.5.2 雜訊密度 65 5.5.3 線性度 65 5.5.4 交叉軸靈敏度與綜合比較 66 第六章 結論與未來工作 72 6.1 結論 72 6.2 未來工作 73

    [1] D. K. Shaeffer, "MEMS inertial sensors: A tutorial overview," IEEE Communications Magazine, vol. 51, no. 4, pp. 100-109, 2013, doi: 10.1109/MCOM.2013.6495768.
    [2] R. P. Feynman, "Plenty of Room at the Bottom," 1959.
    [3] Y. Development, "https://www.yolegroup.com/."
    [4] Wikipedia, "工業4.0." [Online]. Available: https://zh.wikipedia.org/zh-tw/%E5%B7%A5%E6%A5%AD4.0.
    [5] N. A. P. Waydande, S. Chinchanikar, "A Review on Tool Wear Monitoring System," Journal of Mechanical Engineering and Automation vol. 6(5A), pp. 49-53, 2016, doi: 10.5923/c.jmea.201601.09.
    [6] M. Looney, "An Introduction to MEMS Vibration Monitoring," 2014.
    [7] 周志忠, "普通高速車床振動診斷之研究," 機械工程系, 修平科技大學, 2011.
    [8] J.-C. Yu and C.-B. Lan, "System modeling of microaccelerometer using piezoelectric thin films," Sensors and Actuators A: Physical, vol. 88, no. 2, pp. 178-186, 2001/02/15/ 2001, doi: https://doi.org/10.1016/S0924-4247(00)00502-1.
    [9] Q.-M. Wang, Z. Yang, F. Li, and P. Smolinski, "Analysis of thin film piezoelectric microaccelerometer using analytical and finite element modeling," Sensors and Actuators A: Physical, vol. 113, no. 1, pp. 1-11, 2004, doi: 10.1016/j.sna.2004.02.041.
    [10] J.-C. Yu and C.-B. Lan, "System modeling and robust design of microaccelerometer using piezoelectric thin film," in Proceedings. 1999 IEEE/SICE/RSJ. International Conference on Multisensor Fusion and Integration for Intelligent Systems. MFI'99 (Cat. No. 99TH8480), 1999: IEEE, pp. 99-104.
    [11] Y. B. Gianchandani and S. B. Crary, "Parametric modeling of a microaccelerometer: comparing I- and D-optimal design of experiments for finite-element analysis," Journal of Microelectromechanical Systems, vol. 7, no. 2, pp. 274-282, 1998, doi: 10.1109/84.679399.
    [12] F. Gerfers, M. Kohlstadt, H. Bar, M. Y. He, Y. Manoli, and L. P. Wang, "Sub-μg Ultra-Low-Noise MEMS Accelerometers Based on CMOS-Compatible Piezoelectric AlN Thin Films," in TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference, 10-14 June 2007 2007, pp. 1191-1194, doi: 10.1109/SENSOR.2007.4300349.
    [13] A. Ravi Sankar, S. Das, and S. K. Lahiri, "Cross-axis sensitivity reduction of a silicon MEMS piezoresistive accelerometer," Microsystem Technologies, vol. 15, no. 4, pp. 511-518, 2008, doi: 10.1007/s00542-008-0740-y.
    [14] P. Dong et al., "High-performance monolithic triaxial piezoresistive shock accelerometers," Sensors and Actuators A: Physical, vol. 141, no. 2, pp. 339-346, 2008/02/15/ 2008, doi: https://doi.org/10.1016/j.sna.2007.10.032.
    [15] R. Amarasinghe, D. V. Dao, T. Toriyama, and S. Sugiyama, "Simulation, fabrication and characterization of a three-axis piezoresistive accelerometer," Smart Materials and Structures, vol. 15, no. 6, pp. 1691-1699, 2006, doi: 10.1088/0964-1726/15/6/022.
    [16] C. C. Hindrichsen, N. S. Almind, S. H. Brodersen, O. Hansen, and E. V. Thomsen, "Analytical Model of a PZT Thick-Film Triaxial Accelerometer for Optimum Design," IEEE Sensors Journal, vol. 9, no. 4, pp. 419-429, 2009, doi: 10.1109/jsen.2009.2014412.
    [17] M. Mess- and Frequenztechnik, "Piezoelectric Accelerometers: Theory and Application," 2001.
    [18] H.-G. Ranjith, "應用於智慧製造之微機電壓電式振動感測模組開發," 奈米工程與微系統研究所, 國立清華大學, 2018.
    [19] R. J. Roark and W. C. Young, Formulas for stress and strain, 5th ed. New York: McGraw-Hill, 1975.
    [20] Y. Xu, L. Zhao, Z. Jiang, J. Ding, T. Xu, and Y. Zhao, "Analysis and design of a novel piezoresistive accelerometer with axially stressed self-supporting sensing beams," Sensors and Actuators A: Physical, vol. 247, pp. 1-11, 2016, doi: 10.1016/j.sna.2016.04.053.
    [21] B. J. THOMPSON, "A Guide to Accelerometer Specifications." [Online]. Available: https://www.edn.com/a-guide-to-accelerometer-specifications/
    [22] B. Lent, "Steps to Selecting the Right Accelerometer."
    [23] COMSOL, "The Optimization Module User’s Guide."
    [24] B. Mark Serridge and M. Torben R. Licht, Piezoelectric accelerometers and vibration preamplifiers: Theory and Application Handbook. 1987.
    [25] M. T. M. Emmerich and A. H. Deutz, "A tutorial on multiobjective optimization: fundamentals and evolutionary methods," Natural computing, vol. 17, no. 3, pp. 585-609, 2018, doi: 10.1007/s11047-018-9685-y.
    [26] N. Gunantara, "A review of multi-objective optimization: Methods and its applications," Cogent Engineering, vol. 5, no. 1, p. 1502242, 2018/01/01 2018, doi: 10.1080/23311916.2018.1502242.
    [27] STMicroelectronics, "STM32F373CCT6 datasheet." [Online]. Available: https://www.st.com/en/microcontrollers-microprocessors/stm32f373cc.html#documentation.
    [28] Wikipedia, "Nyquist–Shannon sampling theorem." [Online]. Available: https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem.
    [29] Wikipedia, "C#." [Online]. Available: https://zh.wikipedia.org/zh-tw/C%E2%99%AF.
    [30] S. W. Harden, "Scottplot.NET." [Online]. Available: https://github.com/ScottPlot/ScottPlot.
    [31] C. Souza, "Accord.NET." [Online]. Available: https://github.com/accord-net/framework.

    QR CODE