研究生: |
何威達 Ho, Wei-Ta |
---|---|
論文名稱: |
製備石墨烯鍍層之超疏水與超親油海綿並應用於極性與非極性溶劑之分離 Fabrication of graphene-coated superhydrophobic and superolephilic sponge and its application on separation of polar/non-polar solvent |
指導教授: |
戴念華
Tai, Nyan-Hwa |
口試委員: |
葉孟考
Yeh, Meng-Kao 李紫原 Lee, Chi-Young |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 83 |
中文關鍵詞: | 超疏水 、石墨烯 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本研究選用三聚氰胺樹脂海綿為基材,藉由表面疏水化處理或貼附上疏水親油材料使海綿表面具有超疏水及超親油之表面性質,以在水中有效分離出有機溶劑或油類,達到油水分離之效果。
本實驗中的海綿疏水化方法包含為(1)丙酮表面處理及被覆(2)官能基化膨脹石墨鍍層,(3)多壁奈米碳管鍍層,(4)石墨烯鍍層,其中丙酮表面處理可使海綿具有最高的溶劑重量吸收倍率,但其疏水性較低。而在官能基化膨脹石墨鍍層海綿與多壁奈米碳管鍍層海綿部分,因其鍍層不均與固定劑殘留過多,使得溶劑吸收倍率較低。以石墨烯為鍍層之海綿則可同時達到超疏水與超親油表面,並維持高有機溶劑重量吸收倍率。
由於石墨烯鍍層之海綿表面同時具有超疏水與超親油之表面性質,為充分發揮海綿之選擇性分離有機溶劑之優勢,將石墨烯鍍層海綿製成流道表面,當有機溶劑與水之混合溶液流過海綿表面時,有機溶劑會因海綿表面超親油性發生毛細現象而快速吸收,而水溶劑則因超疏水性無法被海綿吸收而快速滑過海綿表面,進而完成成極性/非極性溶劑分離之效果。
參考文獻
[1] 趙文珍, “材料表面工程導論”, 西安交通大學出版社, 西安, Chapter I, (1998).
[2] B. Harris, “Composite materials”, The Institute of Materials, Britain London, Chapter I, (1999).
[3] D. D. L. Chung, “Composite material science and applications functional materials for modern technologies”, Springer-Verlag, Germany Berlin, Chapter I, (2003).
[4] K. Ishizaki, S. Komarneni, M. Nanko, “Porous materials: process technology and application”, Springer-Verlag, Germany Berlin, Chapter I, (1998).
[5] P. M. Adler, “Porous media geometry and transports”, Butterworth Heinemann, Britain London,Chapter I, (1992).
[6] M. Scarselli, P. Castrucci, M. De Crescenzi, “Electronic and optoelectronic nano-devices based on carbon nanotubes”, Journal of Physics: Condensed Matter, Vol. 24, pp. 313202-313227, (2012).
[7] H. O. Pieson, “Handbook of carbon, graphite diamond and fullerenes”, Noyes Publications, United States New York ,Chapter I, (1993).
[8] B. C. Brodie, “On the atomic weight of graphite”, Philosophical Transactions of the Royal Society of London, Vol. 149, pp. 249-259, (1859).
[9] E. Falcao, B. J. Mack, L. Viculis, C. Kwon, M. Bendikov, “Microwave exfoliation of a graphite intercalation compound”, Carbon, Vol. 45, pp. 1367-1369, (2007).
[10] T. Wei, Z. Fan G. Luo, C. Zheng, D. Xie, “A rapidand efficient method to prepared exfoliation by microwave irradiation”, Carbon, Vol. 47, pp. 337-339, (2009).
[11] R. Senguptaa, M. Bhattacharyya, S. Bandyopadhyavb, A. K. Bhowmick, “A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composite”, Progress in Polymer Science, Vol. 36, pp. 638–670, (2011).
[12] M. Toyodaa, M. Inagakib, “Heavy oil sorption using exfoliated graphite: new application of exfoliated graphite to protect heavy oil”, Carbon, Vol. 38, pp. 199–210, (2000).
[13] H. W. Kro, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, “C60: buckminsterfullerence”, Nature, Vol. 318, pp. 162-163, (1985).
[14] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, Vol. 354, pp. 56-58, (1991).
[15] S. Iijima, “Single-shell carbon nanotube of 1-nm diameter”, Nature, Vol. 363, pp. 603-605, (1993).
[16] P. J. F. Harries, “Carbon nanotubes and related structures:new materials for twenty-first century”, Cambridge University Press, Britain Cambridge, (1995).
[17] B. Q. Wei, R. Vajtai, P. M. Ajayan, “Reliability and current carrying capacity of carbonanotubes”, Applied Physics Letters, Vol. 79, pp. 1172-1174, (2001).
[18] Z. Yao, C. L. Kane, C. Dekker, “High-field electrical transport in single wall carbon nanotubes”, Physical Review Letters, Vol. 84, pp. 2941-2944, (1999).
[19] M. R. Falvo, G. J. Clary, “Bending and bucking of carbon nanotubes under large strain”, Nature, Vol. 389, pp. 582-584, (1997).
[20] X. Gui, H. Li, “Recyclable carbon nanotube sponges for oil absorption”, Acta Materialia, Vol. 59, pp. 4798-4804, (2011).
[21] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films”, Science, Vol. 306, pp. 666-669, (2004).
[22] C. Lee, X. Wei, J. W. Kysar, J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene”, Science, Vol. 321, pp. 385-388, (2008).
[23] I. W. Frank, D. M. Tanenbaum, A. M. vanderZande, P. L. McEuen, “Mechanical properties of suspended graphene sheets”, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structure, Vol. 25, pp. 2558-2561, (2007).
[24] R. R. Nair, “Fine structure constant defines visual transparency of graphene”, Science, Vol. 320, p. 1308, (2008).
[25] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, “Superior thermal conductivity of single-layer graphene”, Nano Letters, Vol. 8, pp. 902-907, (2008).
[26] G. Zhao, L. Jiang, Y. He, J. Li, H. Dong, X. Wang, “Sulfonated graphene for persistent aromatic pollutant managemen”, Advanced Materials, Vol. 23, pp. 3959-3963, (2011).
[27] J. Zhao, W. Ren, H. M. Cheng, “Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations”, Journal of Materials Chemistry, Vol. 22, pp. 20197-20202, (2012).
[28] S. park, R. S. Rouff, “Chemical methods for the production of graphenes”, Nature Nanotechnology, Vol. 4, pp. 217-224, (2009).
[29] J. Vaari, J. Lahtinen, P. Hautojavi, “The adsorption and decomposition of acetylene on clean and K-covered Co(0001)”, Catalysis Letters, Vol. 44, pp. 43-49, (1997).
[30] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. B., L. Colombo, R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils”, Science, Vol. 324, pp. 1312-131, (2009).
[31] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, S. S. Pei, “Graphene segregated on Ni surfaces and transferred to insulators”, Applied Physics Letters, Vol. 93, pp. 113103 (3), (2008).
[32] G. Wang, B. Wang, J. Park, B. Sun, J. Yao, “Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation”, Carbon, Vol. 47, pp. 3242-3246, (2009).
[33] C. Y. Su, A. Y. Lu, Y. Xu, F. R. Chen, A. N. Khlobystov, L. J. Li, “High-quality thin graphene films from fast electrochemical exfoliation”, ACS Nano, Vol. 5, pp. 2332-2339, (2011).
[34] W. S. Hummers Jr., R. E. Offeman, “Preparation of graphitic oxide”, Journal of the American Chemical Society, Vol. 80, p. 1339, (1958).
[35] P. Zhu, M. Shen, S. Xiao, D. Zhang, “Experimental study on the reducibility of graphene oxide by hydrazine hydrate”, Journal of Physics: Condensed Matter, Vol. 406, pp. 498-502, (2011).
[36] X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, H. Dai, “Highly conducting graphene sheet and Langmuir-Blodgett films”, Nature Nanotechnology, Vol. 3, pp. 538-542, (2008).
[37] J. C. Berg, “Wettability”, Marcel Dekker, United States New York ,Chapter I, (1993).
[38] W. Barthlott, C. Neinhuis, “Purity of the sacred lotus, or escape from contamination in biological surfaces”, Planta, Vol. 202, pp. 1-8, (1997).
[39] C. Neninhuis, W. Barthlott, “Characterization and distribution of water-repellent, self-cleaning plant surfaces”, Annals of Botany, Vol. 79, pp. 667-677, (1997).
[40] X. Feng, L. Jiang, “Design and creation of superwetting/antiwetting surfaces”, Advanced Material, Vol. 18, pp. 3063–3078, (2006).
[41] T. Young, “An essay on cohesion”, Philosophical Transactions of Royal Society of Lodon, Vol. 95, pp. 65-87, (1805).
[42] R. N. Wenzel, “Resistence of solid Surface to wetting by water”, Industrial and Enginnering Chemistry, Vol. 28, pp. 988-994, (1936).
[43] A. B. D. Cassie, S. Baxter, “Wettiablity of porous surface”, Transactions of the Faraday Society, Vol. 40, pp. 546-551, (1944).
[44] H. B. Eral, D. J. C. M. Mannetje, J. M. Oh, “Contact angle hysteresis: a review of fundamentals and applications”, Colloid and Polymer Science, Vol. 291, pp. 247-260, (2013).
[45] M. Rätzsch, H. Bucka, “The reaction mechanism of the transetherification and crosslinking of melamine resins”, Macromolecular Symposia, Vol. 217, pp. 431–443, (2004).
[46] Y. Wang, “Real time NMR analysis of melamine formaldehyde resin reactions”, Master thesis, The University of Waikato, (2012).
[47] D. D. Nguyen, N.H. Tai, Y. L. Chuen, S. Y. Chen, Y. J. Chen, W.S. Kuo, T. W. Chou, C. S. Hsu, L. J. Chen, “Synthesis of ethanol-soluble few-layer graphene nanosheets for flexible and transparent conducting composite films”, Nanoscale, Vol. 4, pp. 632-638, (2011).
[48] M. Kujawski, J. D. Pearse, E. Smela, “Elastomer filled with exfoliated graphite as compliant electrodes”, Carbon, Vol. 48, pp. 2409-2417, (2010).
[49] 林季勳, “Surface modification of graphite oxide by alky epoxy chains”, 碩士論文, 國立交通大學, (2008).
[50] S. Brunauer, P. H. Emmett, E. Teller, “Adsorption of gases in multimolecular layers”, Journal of the American Chemical Societ, Vol. 60, pp. 309-319, (1938).
[51] D. D. Nguyen, N. H. Tai, S.B. Lee, W.S. Kuo, “Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method”, Energy & Environmental Science, Vol. 5, pp. 7908-7912, (2012).
[52] F. A. Abuilaiwi1, T. Laoui1, M. Al-Harthi, M. A. Atieh, “Modification and functionalization of multiwalled carbon nanotube (MWCNT). via Fischer esterification”, The Arabian Journal for Science and Engineering, Vol. 35, pp. 37-48, (2010).
[53] E. Y. Choi, T.H. Han, J. Hong, J. E. Kim, S. H. Lee, H. W. Kim, S. O. Kim, “Noncolvalent functionalization of graphene with end-functional polymers”, Journal of Materials Chemistry, pp. 1907-1912, (2010).
[54] R. J. seresht, M. Jahanshahi, A. M. Rashidi, A. A. Ghoreyshi, “Synthesis and characterization of thermally-reduced graphene”, Iranica Journal of Energy & Environment, Vol. 4, pp. 53-59, (2013).
[55] Y. J. Shin, Y. Wang, H. Huang, G. Kalon, A. T. S. Wee, Z. Shen, Ch. S. Bhatia, H. Yang, “Surface energy engineering of graphene”, Langmuir, Vol. 26, pp. 3798-3802, (2010).