研究生: |
卓見 Cho, Chien |
---|---|
論文名稱: |
化學探針應用於金屬離子及氟離子成像之發展 Development of Chemical Probes for the Imaging of Metal and Fluoride Ions |
指導教授: |
陳貴通
Tan, Kui-Thong |
口試委員: |
許馨云
Hsu, Hsin-Yun 黃郁棻 Huang, Yu-Fen |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 121 |
中文關鍵詞: | 化學探針 、細胞表面 、籠閉式生物素 、金屬離子 、氟離子 |
外文關鍵詞: | chemical probes, cell membrane, cage-biotin, metal ions, fluoride ions |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
儘管螢光探針在偵測小分子的應用上不斷地突破,仍有個基本的問題有待解決:在高濃度蛋白質的樣品內受到的非專一性結合所產生的感擾訊號。在本篇論文當中,我們將介紹一種封裝在抗生物素蛋白質腔中的螢光離子探針的新穎概念,來阻隔非專一性結合。我們在環境敏感性分子-1,8-naphthalimide螢光基團修飾上生物素(biotin)基團與鋅離子辨識端,透過將探針和抗生物素蛋白結合,以阻隔複雜蛋白質環境非專一性之干擾。我們結合SNAP-tag標記技術與avidin-biotin系統,成功地在Hela細胞表面標記上螢光探針,並且快速偵測到鋅離子產生之螢光影像。
此外,我們也開發一種非螢光化學探針,透過生物素(biotin)與含有Cy3螢光基團之鏈黴親合素蛋白(streptavidin-Cy3)專一性結合的特點,成功開發出可偵測氟離子之反應型籠閉生物素探針,並且應用於小分子微陣列(Small-Molecule Microarrays, SMMs)之技術。透過小分子微陣列小型化、高通量篩選的特性,將探針固定於微陣列載體上觀測探針與streptavidin-Cy3結合後所產生之螢光影像。
Despite the promising improvements made recently in fluorescence probes for the small molecules detection, there is one problem remain: strong nonspecific signals in samples containing high protein levels. In this thesis, we introduce a novel fluorescent probe encapsulated in protein cavity concept as demonstrated by avidin protein. The probes were constructed by following the current probe design for zinc ions with a short biotin linker for the conjugation to avidin protein to overcome the nonspecific fluorescence in blood samples by blocking out nonspecific dye−protein interactions. Furthermore, The AGT (O6-alkylguanine-DNA alkyltransferase) labeling methodology provides a way to direct localization of the Zn(II) probe on the surface of living cells and to visualize qualitatively a turn-on emission response to addition of zinc.
In addition, we introduce a novel sensing mechanism based on caged biotin for fluoride ion detection in small-molecule microarrays (SMMs). The reactable caged biotin probes were modified with fluoride-cleavable groups at the urea nitrogen. Upon uncaging with fluoride ions, the caged biotin probes are transferred to the streptavidin-Cy3 protein to emit stronger fluorescence. We then designed and synthesized novel caged biotin probes that could immobilized on the surface of microarrays.
1. Rinaldi, A., EMBO Reports. 2007, 8, 629.
2. Fabbrizzi, L.; Poggi, A. Chem. Soc. Rev. 1995, 24, 197.
3. Lehn, J. M. Angew. Chem. Int. Ed. Engl. 1990, 29, 1304
4. Fan, L. J.; Zhang, Y.; Murphy, C. B.; Angell, S. E.; Parker, M. F. L.; Flynn, B. R.; Jones, W. E. Coord. Chem. Rev. 2009, 253, 410.
5. Xu, Z.; Chen, X.; Kim, H. N.; Yoon, J. Chem. Soc. Rev. 2010, 39, 127
6. Rolfs, A.; Hediger, M. A. J. Physiol. 1999, 518.1, 1
7. Vögtle, F. Supramolecular Chemistry. Wiley. New York, 1991.
8. Clark, L., Jr.; Lyons, C. Ann. NY Acad. Sci. 1962, 102, 29.
9. Long, F.; Zhu, A.; Shi, H. Sensors 2013, 13, 13928.
10. Terai, T.; Nagano, T. Pflugers Arch., EJP 2013, 465, 347.
11. Morris, M. C. (2012) Fluorescence-based biosensors: from concepts to applications. Academic Press.
12. aleur, B. Molecular Fluorescence; Wiley-VCH﹕Weinheim, Germany, 2001.
13. Valeur, B.; Leray, I.; Coord. Chem. Rev. 2000, 205, 3.
14. Nagano, T. Proc. Jpn. Acad., Ser. B 2010, 86, 837.
15. Ko, K. C.; Wu, J. S.; Kim, H. J.; Kwon, P. S.; Kim, J. W.; Bartsch, R. A.; Lee, J. Y.; Kim, J. S., Chem. Commun. 2011, 47, 3165.
16. Hettiarachchi, S. U.; Prasai, B.; McCarley, R. L. J. Am. Chem. Soc. 2014, 136, 7575.
17. Sakabe, M.; Asanuma, D.; Kamiya, M.; Iwatate, R. J.; Hanaoka,K.; Terai, T.; Nagano, T.; Urano, Y. J. Am. Chem. Soc. 2013, 135, 409.
18. Hussain, S. A. (2009) An Introduction to Fluorescence Resonance Energy Transfer(FRET). arXiv preprint arXiv:0908.1815.
19. Introduction to fluorescence sensing; Demchenko, A. P., Ed.; Springer: Amsterdam, 2009.
20. Lee, M. H.; Kim, H. J.; Yoon, S.; Park, N.; Kim, J. S. Org. Lett. 2008, 10, 213.
21. Loving, G. S.; Sainlos, M.; Imperiali, B. Trends Biotechnol. 2010, 28, 73.
22. Uchiyama, S.; Takehira, K.; Yoshihara, T.; Tobita, S.; Ohwade, T.; Org. Lett. 2006, 8, 5869.
23. Kelkar, D. A.; Chattopadhyay, A. J. Phys. Chem. B. 2004, 108, 12151.
24. (a) Uchiyama, S.; Santa, T.; Okiyama, N.; Fukushima, T.; Imai, K.; Biomed, Chromatogr. 2001, 15, 295.
(b) Santa, T.; Fukushima, T.; Ichibangase, T.; Imai, K. Biomed. Chromatogr. 2008, 22, 343.
25. Kucherak, O. A.; Didier, P.; Mely, Y.; Klymchenko, A. S. J. Phys. Chem. l. 2010, 1, 616.
26. Lee, M. H.; Kim, H. J.; Yoon, S.; Park, N.; Kim, J. S. Org. Lett. 2008, 10, 213.
27. Huang, C.; Yin, Q.; Zhu, W.; Yang, Y.; Wang, X.; Qian, X.; Xu, Y. Angew. Chem. Int. Ed. 2011, 50, 7551.
28. Frederickson, C. J.; Koh, J. Y.; Bush, A. I. Nat. ReV. Neurosci. 2005, 6, 449.
29. Bush, A. I.; Pettingell, W. H., Jr.; Multhaup, G.; d Paradis, M.;Vonsattel, J. P.; Gusella, J. F.; Beyreuther, K.; Masters, C. L.; Tanzi, R. E. Science 1994, 265, 1464.
30. Xu, Z.; Baek, K.-H.; Kim, H. N.; Cui, J.; Qian, X.; Spring, D. R.; Shin, I.; Yoon, J. J. Am. Chem. Soc. 2010, 132, 601.
31. Haase, H.; Beyersmann, D . Biochem. Biophys. Res. Commun. 2002, 296, 923.
32. Ow, Y.-L. P.; Green, D. R.; Hao, Z.; Mak, T. W. Nat. Rev. Mol. Cell Biol. 2008, 9, 532.
33. Murphy, M. P.; Smith R. A. J. Adv. Drug Delivery Rev. 2000, 41, 235.
34. Pierrel, F.; Cobine, P. A.; Winge, D. R. BioMetals. 2007, 20, 675.
35. Atkinson, A.; Winge, D. R. Chem. Rev. 2009, 109, 4708.
36. Sensi, S. L.; Ton-That, D.; Sullivan, P. G.; Jonas, E. A.; Gee, K. R.; Kaczmarek, L. K.; Weiss, J. H. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 6157.
37. Sensi, S. L.; Ton-That, D.; Weiss, J. H.; Rothe, A.; Gee, K. R. Cell Calcium 2003, 34, 281.
38. Keppler, A.; Gendreizig, S.; Gronemeyer, T.; Pick, H.; Vogel, H.; Johnsson, K. Nat. Biotechnol. 2002, 21, 86.
39. Tomat, E.; Nolan, E. M.; Jaworski, J.; Lippard, S. J. J. Am. Chem. Soc. 2008, 130, 15776.
40. Iyoshi, S.; Taki, M.; Yamamoto, Y. Org. Lett. 2011, 13, 4558.
41. Guesdon, J. L.; Ternynck, T.; Avrameas, S. Histochem. Cytochem. 1979, 27, 1131.
42. Helppolainen, S. H.; Nurminen, K. P.; Määttä, J. A.; Halling, K. K.; Slotte, J. P.; Huhtala, T.; Liimatainen, T.; Ylä-Herttuala. S.; Airenne, K. J.; Närvänen, A.; Jänis, J.; Vainiotalo, P.; Valjakka, P.; Valjakka, J.; Kulomaa, M. S.; Nordlund, J. R. Biochem. J. 2007, 405, 397.
43. Wilchek, M.; Bayer, E. A. Methods Enzymol. 1990, 184, 5.
44. Wilchek, M.; Bayer, E. A. (1990) Avidin-biotin technology. Academic Press.
45. Hahn, I. F.; Pickenhahn, P.; Lenz, W.; Brandis, H. J. Immunol. Methods. 1986, 92, 25.
46. Hsu, S. M.; Raine, L. J. Histochem. Cytochem. 1981, 29, 1349.
47. Bakalova, R.; Zhelev, Z.; Ohba, H.; Baba, Y. J. Am. Chem. Soc. 2005, 127, 9328.
48. Johnson, I. The Molecular Probes Handbook: A Guide to Fluorescent Probes and Labeling Technologies, 11th Edition; Life Technologies Corporation, 2010.
49. Zanetti-Domingues, L. C.; Tynan, C. J.; Rolfe, D. J.; Clarke, D. T.; Martin-Fernandez, M. PloS one 2013, 8, e74200.
50. Wu, T. W.; Lee, F. H.; Gao, R.C.; Chew C.Y.; Tan, K.T. Anal. Chem. 2016, 88, 7873.
51. Eide, D. J. Biochim Biophys Acta. 2006, 711.
52. Masuoka, J.; Saltman, P. J. Biol. Chem. 1994, 269, 25557.
53. Carter, K. P.; Young, A. M.; Palmer, A. E. Chem. Rev. 2014, 4564.
54. Klug, A.; Rhodes, D. Cold Spring Harb Symp Quant Biol 1987, 473.
55. Kaplan, J. H.; Forbush III, B.; Hoffman, J. F. Biochemistry 1978, 17, 1929.
56. Ellis-Davies, G. C. R. Nat. Methods 2007, 4, 619.
57. Belov, V. N.; Wurm, C. A.; Boyarskiy, V. P.; Jakobs, S.; Hell, S. W. Angew. Chem. Int. Ed. 2010, 49, 3520.
58. Dujols, V.; Ford, F.; Czarnik, A. W. J. Am. Chem. Soc. 1997, 119, 7386.
59. Ko, S.-K.; Yang, Y.-K.; Tae, J.; Shin, I. J. Am. Chem. Soc. 2006, 128, 14150.
60. Urano, Y.; Kamiya, M.; Kanda, K.; Ueno, T.; Hirose, K.; Nagano, T. J. Am. Chem. Soc. 2005, 127, 4888.
61. Taki, M.; Iyoshi, S.; Ojida, A.; Hamachi, I.; Yamamoto, Y. J. Am. Chem. Soc. 2010, 132, 5938.
62. Kim, S. Y.; Park, J.; Koh, M.; Park, S. B.; Hong, J. I. Chem. Commun. 2009, 4735
63. Terai, T.; Maki, E.; Sugiyama, S.; Takahashi, Y.; Matsumura, H.; Mori, Y.; Nagano, T. Chem. Biol. 2011, 18, 1261.
64. Hama, Y.; Urano, Y.; Koyama, Y.; Kamiya, M.; Bernardo, M.; Paik, R. S.; Shin, I. S.; Paik, C. H.; Choyke, P. L.; Kobayashi, H. Cancer Res. 2007, 67, 2791.
65. MacBeath, G.; Schreiber, S. L. Science 2000, 289, 1760.
66. Hong, J. A.; Neel, D. V.; Wassaf, D.; Caballero, F.; Koehler, A. N. Curr. Opin. Chem. Biol. 2014, 18, 21
67. Lee, M.-r.; Shin, I. Angew. Chem., Int. Ed. 2005, 44, 2881.
68. Kohn, M.; Wacker, R.; Peters, C.; Schroder, H.; Soulere, L.; Breinbauer, R.; Niemeyer, C. M.; Waldmann, H. Angew. Chem., Int. Ed. 2003, 42, 5830
69. Uttamchandani, M.; Walsh, D. P.; Yao, S. Q.; Chang, Y.-T. Curr. Opin. Chem. Biol. 2005, 9, 4.
70. Dillmore, W. S.; Yousaf, M. N.; Mrksich, M. Langmuir 2004, 20, 7223.
71. Li, S.; Bowerman, D.; Marthandan, N.; Klyza, S.; Luebke, K. J.; Garner, H. R.; Kodadek, T. J. Am. Chem. Soc. 2004, 126, 4088.
72. Friscourt, F.; Fahrni, C. J.; Boons, G. J. J. Am. Chem. Soc. 2012, 134, 18809.