研究生: |
朱嘉鴻 Chu, Jia-Hong |
---|---|
論文名稱: |
藉由製程溫度控制鍍製鋯-銅-鎳-鋁金屬玻璃薄膜及其微結構、熱、機械與抗菌性質 Microstructure, Thermal, Mechanical and Antimicrobial Properties in Zr-Cu-Ni-Al Thin Film Metallic Glass via Processing Temperature Control |
指導教授: |
杜正恭
Duh, Jenq-Gong |
口試委員: |
朱瑾
李志偉 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 95 |
中文關鍵詞: | 金屬玻璃薄膜 、濺鍍 、熱性質 、機械性質 、抗菌性質 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋯基金屬玻璃薄膜具有良好的玻璃形成能力(GFA)、抗腐蝕以及生物相容性等獨特性質,在許多領域深具潛在的應用發展。利用濺鍍技術可鍍製超光滑表面之金屬玻璃薄膜,有利於對不鏽鋼製品上進行表面改質,並可進一步擴展到醫療器具等用途。在生醫領域的應用與微機電系統中薄膜是很常被使用的材料,因此提升金屬玻璃薄膜之機械性質及多功能性是必要的。
本實驗試以製程溫度控制,濺鍍具有抗菌效果之金屬玻璃薄膜於304不鏽鋼片上,探討基板溫度增加對於薄膜性質上的影響。由於濺鍍過程中具有非常快的冷卻速度而鋯基金屬玻璃具有優異的玻璃形成能力,在經由不同溫度下製程的薄膜,對於非晶質基底結構並無明顯影響,所有的薄膜表現出相似的結構和熱性質。藉由機械性質的量測,其硬度值和楊氏模數可提高到7.1 GPa及135 GPa,遠高於室溫製程時的4.7 GPa和109 GPa,可歸功於製程溫度增加所造成平均原子距離的縮短、短程有序原子團簇的增加與自由體積的減少。
另一方面,透過液態培養法及平板計數法進行金屬玻璃薄膜抗菌性能測試,參照日本工業標準(JIS standard),在大腸桿菌及金黃葡萄球菌的檢驗中,其薄膜抗菌率高達99%。由於非晶質薄膜具有原子級平整表面、疏水性和釋放銅離子能力,結果顯示304不鏽鋼基材上披覆一層金屬玻璃薄膜時,其呈現顯著的抗菌能力,除此之外,金屬玻璃薄膜與細菌之間的相互作用現象也更進一步討論。故藉由製程溫度的控制對於薄膜機械性質上能有顯著的提升,同時具有良好的抗菌能力,期望藉由本研究可以將金屬玻璃薄膜進一步推廣至醫療器具的應用,同時也降低院內感染的可能性。
Zr-based thin film metallic glass (TFMG) exhibiting the unique properties of good glass forming ability (GFA), corrosion resistance, and biocompatibility can be applied in various novel fields of industries. In addition, an ultra smooth surface is obtained with the TFMG coatings, which is beneficial to modify the surface condition of stainless steel and can be extended to medical appliances such as surgical blades and micro-surgery scissors. Since the thin film materials are customarily employed to biomedical applications and micro-electro-mechanical system (MEMS), the improvement of mechanical properties and functionality of thin film metallic glass is imperative.
The aims of this study are to fabricate the antimicrobial TFMG coatings onto SUS304 plates and to investigate the characteristics of coatings with various substrate temperatures. The amorphous matrix and cluster structure are slightly affected by the processing temperatures due to high cooling rate during deposition and superior glass-forming ability (GFA). All the coatings exhibit similar structural and thermal properties, yet the hardness and elastic modulus can significantly increase to 7.1 GPa and 135 GPa, respectively, with increasing the processing temperature up to 400 oC, well above the values of 4.7 GPa and 109 GPa at room temperature. The enhancement of mechanical properties are attributed to the shortening of average atomic distance, the increase of the short range ordered clusters and the vanish of free volumes. Liquid culture methods and plate counting methods are used to assess the antimicrobial performance of specimens. The antimicrobial rate against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) under JIS standard is over 99%. The results show that the surface of SUS 304 stainless steel substrate can be modified with deposited Zr-Cu-Ni-Al TFMG, and their improved antimicrobial efficacy against those bacteria is attributed to their amorphous rough surface, hydrophobic properties and released copper ion. In addition, the phenomenon of interaction between TFMG and bacteria has also been discussed. The TFMG developed in this study with adequate hardness, good glass forming ability and antimicrobial efficiencies can be used as a promising candidate to improve the surface properties of the medical appliances and also to reduce the possibility of nosocomial infection.
[1] A. Inoue, Acta Mater. 48 (1) (2000) 279.
[2] Q.S. Zhang, W. Zhang, A. Inoue, Mater. Trans. 48 (2007) 629.
[3] A. Inoue, A. Takeuchi, Acta Mater. 59 (2011) 2243.
[4] W. Zhang, Q.S. Zhang, C.L. Qin, A. Inoue Mater. Sci. Eng. 148 (2008) 92.
[5] Y. Yokoyama, E. Mund, A. Inoue, L. Schultz, Mater. Trans. 48 (2007) 3190.
[6] C. Suryanarayana, A. Inoue, Bulk Metallic Glasses, CRC Press, Boca Raton FL, 2010.
[7] H.S. Chou, J.C. Huang, and L.W. Chang, Surf. Coat. Technol. 205 (2010) 587.
[8] C.J. Chen, J.C. Huang, H.S. Chou, Y.H. Lai, L.W. Chang, X.H. Du, J.P. Chu, T.G. Nieh, J. Alloys Compd. 483 (2009) 337.
[9] H.S. Chou, J.C. Huang, L.W. Chang, Surf. Coat.Technol. 205 (2) (2010) 587.
[10] F.X. Liu, P.K. Liaw, W.H. Jiang, C.L. Chiang, Y.F. Gao, Y.F. Guan, J.P. Chu, P.D. Rack, Mater. Sci. Eng. A 468 (2007) 246.
[11] H.S. Chou, J.C. Huang, L.W. Chang, Surf. Coat. Technol. 205 (2010) 587.
[12] F.X. Liu, F.Q. Yang, Y.F. Gao, W.H. Jiang, Y.F. Guan, P.D. Rack, O. Sergic, P.K. Liaw Surf. Coat. Technol. 203 (2009) 3480.
[13] S. Hata, T. Kato, T. Fukushige, A. Shimokohbe, Microelectron. Eng. 67 (2003) 574.
[14] T. Fukushige, S. Hata, A. Shimokohbe, J. Microelectromech. Syst. 14 (2005) 243.
[15] J.C. Huang, J.P. Chu, J.S.C. Jang, Intermetallics 17 (2009) 973.
[16] T. Yuranova, A.G. Rincon, A. Bozzi, S. Parra, J. Photochem. Photobiol. A 161 (2003) 27.
[17] P.H. Tsai, Y.Z. Lin, J.B. Li, S.R. Jian, J.S.C. Jang, C. Li, J.P. Chu, J.C. Huang, Intermetallics 31 (2012) 127.
[18] P.T. Chiang, G.J. Chen, S.R. Jian, Y.H. Shih, J.S.C. Jang, C.H. Lai, Fooyin J. Health Sci. 2 (1) (2010) 12.
[19] S. Takeuchi, K. Edagawa, Prog. Mater. Sci. 56 (2011) 785.
[20] Y.F. Xue, H. N. Cai, L. Wang, F. C. Wang, H. F. Zhang, Appl. Phys. Lett. 90 (2007) 081901.
[21] Z. Zhu, H. Zhang, Z. Hu, W. Zhang, A. Ioune, Sripta Mater. 62 (2010) 278.
[22] T.A. Phan, S. Lee, A. Makino, H. Oguchi, H. Okamoto, H. Kuwano, Jpn. J. Appl. Phys. 51 (2012) 055803.
[23] J.P. Chu, C.T. Liu, T. Mahalingam, S.F. Wang, M.J. O'Keefe, B. Johnson, C.H. Kuo, Phys. Rev. B 69 (2004) 113410.
[24] J.P. Chu, C.T. Lo, Y.K. Fang, B.S. Han, Appl. Phys. Lett. 88 (2006) 012510.
[25] J.P. Chu, C.Y. Wang, L.J. Chen, Q. Chen, Surf. Coat. Technol. 205 (2011) 2914.
[26] H.S. Chou, J.C. Huang, L.W. Chang, T.G. Nieh, Appl. Phys. Lett. 93 (2008) 191901.
[27] J. Kramer, Z. Phys. 111 (1938) 409.
[28] A. Bremer, D.E. Couch, E.K. Williams, J. Res. Natl. Bur. Stand. 44 (1950) 109.
[29] W. Klement, R.H. Willens, P. Duwez, Nature 187 (1960) 869.
[30] H.W. Kui, D. Turnbull, Appl. Phys. Lett. 47 (1985) 796.
[31] H.W. Kui, A.L. Greer, D. Turnbull, Appl. Phys. Lett. 45 (1984) 615.
[32] A. Inoue, T. Zhang, T. Masumoto, Mater. Trans. JIM 30 (1989) 965.
[33] J.F. Löffler, Intermetallics 11(2003) 529.
[34] W.H. Wang, C. Dong, C.H. Shek, Mater. Sci. Eng. 44 (2004) 45.
[35] H.S. Chen, D. Turnbull, Acta Metall. 17 (1969) 1021.
[36] Z.P. Lu, C.T. Liu, Phys. Rev. Lett. 91 (2003) 115505.
[37] A. Zhu, S.J. Poon, G.J. Shiflet, Scri. Mater. 50 (2004) 987.
[38] A. Inoue, “Bulk Amorphous Alloys Practical Characteristics and Applications Institute for Materials Research”, Tohoku University, Japan (1999).
[39] A. Inoue, T. Negishi, H.M. Kimura, T. Zhang, A.R. Yavari, Mater. Trans. J. Immunol. Methods. 39 (1998) 318.
[40] M.W. Chen, I. Dutta, T. Zhang, I. Inuoe, T. Sakurai, Appl. Phys. Lett. 79 (2001) 42.
[41] D.B. Miracle, Acta Mater. 54 (2006) 4317.
[42] H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, E. Ma, Nature 439 (2006) 419.
[43] W.H. Wang, E. Wu, R.J. Wang, S.J. Kennedy, A.J. Studer, Phys. Rev. B 66 (2002) 104205.
[44] M.H. Cohen, D. Turnbull, J. Chem. Phys. 31 (1959) 1164.
[45] F. Spaepen, Acta Met. 25 (1977) 407.
[46] T. Egami, Intermetallics 14 (2006) 882.
[47] P. Murali and U. Ramamurty, Acta Mater. 53 (2005), 1467.
[48] A. Zhu, S.J. Poon, G.J. Shiflet, Scri. Mater. 50 (2004) 987.
[49] M.W. Chen. Annu. Rev. Mater. Res. 38 (2008) 14.1.
[50] C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Acta Mater. 55 (2007) 4067.
[51] H.B. Lu, Y. Li, F.H. Wang, Electrochim. Acta., 52 (2006) 474.
[52] W.H. Wang, Prog. Mater. Sci. 52 (2007) 540.
[53] Y.Q. Cheng, E. Ma, H.W. Sheng, Phys. Rev. Lett. 102(2009) 245501.
[54] Y. Yokoyama, T. Yamasaki, P.K. Liaw, R.A. Buchanan, A. Inoue, Mater. Sci. Eng. A 449 (2007) 621.
[55] Y.H. Li, W. Zhang, C. Dong, J.B. Qiang, A. Makino, A. Inoue, Intermetallics 18 (2010) 1851.
[56] T. Wada, F.X. Qin, X.M. Wang, M. Yoshimura, A. Inoue, N. Sugiyama, R. Ito, N. Matsushita, J. Mater. Res. 24 (2009) 2941.
[57] C.L. Qin, W. Zhang, K. Asami, N. Ohtsu, A. Inoue, Acta Mater. 53 (2005) 3903.
[58] K. Asami, C.L. Qin, T. Zhang, A. Inoue, Mater. Sci. Eng. A 375 (2004) 235.
[59] Y.H. Li, W. Zhanga, C. Dong, J.B. Qiang, M. Fukuhara, A. Makino, A. Inoue, Mater. Sci. Eng. A 528 (2011) 8551.
[60] C.L. Qin, W. Zhang, K. Asami, N. Ohtsu, A. Inoue, Acta Mater. 53 (2005) 3903.
[61] J.L. Vossen, W. Kern, Thin Film Processes, Academic Press New York, 1978, California.
[62] http://www.etafilm.com.tw.
[63] R.B. Schwarz, W.L. Johnson, Phys. Rev. Lett. 51 (1983) 415.
[64] S. Hata, K. Sato, A. Shimokohbe, SPIE International Symposium on Microelectronics and Micro-Electro-Mechanical Systems, MICRO/MEMS 3892 (1999) 97.
[65] Y. Liu, S. Hata, K. Wada, A. Shimokohbe, Proceedings of the 14th IEEE International Conference on Micro Electro and Mechanical Systems; Interlaken, Switzerland, (2001) 37.
[66] P. Sharma, H. Kimura, Y. Saotome, A. Inoue, Nanotechnology 18 (2007) 035302.
[67] Y. Liu, S. Hata, K. Wada and A. Shimokohbe, J. Appl. Phys. 40 (2001) 5382.
[68] J.P. Chu, J.S.C. Jang, J.C. Huang, H.S. Chou, Y. Yang, J.C. Ye, Y.C. Wang, J.W. Lee, F.X. Liu, P.K. Liaw, Y.C. Chen, C.M. Lee, C.L. Li, Cut Rullyani, Thin Solid Films 520 (2012) 5097.
[69] P. Murali, U. Ramamurty, Acta Mater. 53 (2005) 1467.
[70] J.P. Chu, S.F. Wang, S.J. Lee, C.W. Chang, J. Appl. Phys. 88 (2000) 6086.
[71] B. Gottenbos, H.C. van der Mei, F. Klatter, D.W. Grijpma, J. Feijen, P. Nieuwenhuis, H.J. Busscher, Biomaterials 24 (2003) 2707.
[72] M. Gerald, L. Mandell, J. E. Bennett, R. Dolin, Principles and Practice of Infectious Diseases, Churchill Livingstone, Philadelphia (2005).
[73] E. Tacconelli, G. De Angelis, M.A. Cataldo, E. Pozzi and R. Cauda, J. Antimicrob. Chemother. 61 (2008) 26.
[74] B. Borgatta , N. Kmet-Lunaček, J. Rello, Med. Intensiva 36 (2012) 576.
[75] M.G. Baker, L.T. Barnard, A. Kvalsvig, A. Verrall, J. Zhang, M. Keall, N. Wilson, T. Wall, P. Howden-Chapman, The Lancet 379 (2012) 1112.
[76] J.O. Noyce, H. Michels, C.W. Keevil, J. Hosp. Infect. 63 (2006) 289.
[77] D.P. Dowling, A.J. Betts, C. Pope, M.L. McConnell, R. Eloy, M.N. Arnaud, Surf. Coat. Technol. 163 (2003) 637.
[78] J.C. Huang, J.P. Chu, J.S.C. Jang, Intermetallics 17 (12) (2009) 973.
[79] J.P. Chu, C.M. Lee, R.T. Hung, P.K. Liaw, Surf. Coat. Technol. 205 (2011) 4030.
[80] S.A. Wilks, H. Michels, C.W. Keevil, Int. J. Food Microbiol. 105 (2005) 445.
[81] X. Zhang, X. Huang, L. Jiang, Y. Ma, A. Fan, B. Tang, Appl. Surf. Sci. 258 (2011) 1399.
[82] A. Daniel, C. Le Pen, C. Archambeau, F. Reniers, Appl. Surf. Sci. 256 (2009) S82.
[83] E.M. Hetrick, M.H. Schoenfisch, Chem. Soc. Rev. 35 (2006) 780.
[84] N. Hoiby, T. Bjarnsholt, M. Givskov, S. Molin, O. Ciofy, J. Antimicrob. Agents 35 (2010) 322.
[85] A.W. Smith, Adv. Drug Delivery Rev. 57 (2005) 1539.
[86] D.H. Song, S.H. Uhm, S.B. Lee, J.G. Han, K.N. Kim, Thin Solid Films 519 (2011) 7079.
[87] J. Fu, J. Ji, D. Fan, J. Shen, J. Biomed. Mater. Res. A, 79 (2006) 665.
[88] C.J. Chung, H.I. Lin, Surf. Coat. Technol. 202 (2007) 1302.
[89] Y.C. Kuo, J.W. Lee, C.J. Wang, Y.J. Chang, Surf. Coat. Technol. 202 (2007) 854.
[90] C.H. Hu, Z.R. Xu, M.S. Xia, Vet Microbiol 109 (2005) 83.
[91] M. Wang, W.X. Wang, Environ. Sci. Technol. 42 (2008) 940.
[92] T. Yuranova, A.G. Rincon, A. Bozzi, S. Parra, J. Photochem. Photobiol. A 161 (2003) 27.
[93] Z.G. Dan, H.W. Ni, B.F. Xu, J. Xiong, P.Y. Xiong, Thin Solid Films 492 (2005) 93.
[94] Y.C. Kuo, J.W. Lee, C.J. Wang, Y.J. Chang, Surf. Coat. Technol. 202 (2007) 854.
[95] P.C. Liu, J.H. Hsieh, C.Li, Y.K. Chang, C.C. Yang, Thin Solid Films 517 (2009) 4956.
[96] G. Grass, C. Rensing, M. Solioz, Appl. Environ. Microbiol. 77 (2011) 1541.
[97] J.I. Goldstein, 3rd ed. Plenum Press, New York, (2003)
[98] W.C. Oliver, G.M. Pharr, J. Mater. Res. 7 (1992) 1564.
[99] JIS Z2801: 2000. Antimicrobial products–Test for antimicrobial activity and efficacy. Japanese Industrial Standard (2001).
[100] C. Ophus, E.J. Luber, M. Edelen, Z. Lee, L.M. Fischer, S. Evoy, D. Lewis, U. Dahmen, V. Radmilovic, D. Mitlin, Acta Mater. 57 (2009) 4296.
[101] O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Mück, B. Rech, H.Wagner, Sol. Energy Mater. Sol. Cells 62 (2000) 97.
[102] J.S.C. Jang, S.R. Jian, D.J. Pan, Y.H. Wu, J.C. Huang, T.G. Nieh, Intermetallics 18 (2010) 560.
[103] J.S.C. Jang, S.R. Jian, C.F. Chang, L.J. Chang, Y.C. Huang, T.H. Li, J.C. Huang, C.T. Liu, J. Alloys Compd. 478 (2009) 215.
[104] Y.H. Liu, D. Wang, K. Nakajima, W. Zhang, A. Hirata, T. Nishi, A. Inoue, M.W. Chen, Phys. Rev. Lett. 106 (2011) 125504.
[105] P.J. Burnett and D.S. Rickerby. Thin Solid Films 154 (1987) 403.
[106] C.A. Schuh, T.G. Nieh., J. Mater. Res., 19 (2004) 46.
[107] L.D. Renner, D.B. Weibel, Mater. Res. Bull., 36 (2011) 347.
[108] F.W. Hyde, M. Alberg, K. Smith, J. Ind. Microbiol. Biotechnol. 19 (1997) 142.
[109] A.K. Chatterjee,R.K. Sarkar,A.P. Chattopadhyay, P. Aich, R. Chakraborty, T. Basu, Nanotechnology 23 (2012) 085103.
[110] N. Aumsuwan, R.C. Danyus, S. Heinhorst, M.W. Urban, Biomacromolecules, 9 (2008) 1712.
[111] S. Hosokawa, H. Sato, N. Happo, K. Mimura, Y. Tezuka, T. Ichitsubo, E. Matsubara, N. Nishiyama, Acta Mater. 55 (2007) 3413.
[112] L. Rodrigues, H. Van Der Mei, I.M. Banat, J. Teixeira, R. Oliveira, FEMS Immunol Med Microbiol. 46 (2006) 107.