研究生: |
鄭博文 Cheng, Po-Wen |
---|---|
論文名稱: |
單光子脈衝的量子儲存 Quantum Storage of Single-Photon Pulses |
指導教授: |
余怡德
Yu, Ite Albert |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 電磁波誘發透明 、單光子 、光速減慢 、光脈衝 、低溫原子 、雷射冷卻 、磁光陷阱 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自「電磁波引發透明」的發現以來,光速減慢與與光儲存取出變成為此現象的有趣課題。2005年十一月《自然》雜誌中連續發表了電磁波引發透明現象藉以儲存單光子的實驗,前述實驗更驗證了存入與取出之光子有高度的關聯性,意即此存入與取出並不會改變光子的統計特性;便能將依量子狀態非藉由量測而儲存的古典機制,而直接的把量子狀態的波函數存入介質中。此一特性在人類長久以來對於量子電腦記憶元件的實現跨上一大步,使得量子電腦有了緩衝媒介,並藉光子開關﹝Photon Switching﹞、Cross Phase Modulation操控,達到量子狀態的操控,有如傳統電腦中電晶體來作為狀態的操控,組合出所需要的各式運算結構。
在單光子光源實現之前,首先考慮到當光源出現後實驗操控的需求,必須率先建立單光子在介質中儲存取出的控制與量測能力,為後期的實驗鋪路。吾人以傳統半導體雷射光源衰弱至數個光子的脈衝強度,作為探測光束,並將其存入銣87原子低溫原子團,約略一個微秒時間,並取出觀察其行為與特性。光脈衝偵測部分以單光子模組偵測器﹝SPCM﹞檢視取出的光脈衝,發現儲存取出的機率分布與探測光束較強時以光偵測器﹝Photon Detector﹞測量的強度分布相同,與電子繞射的概念相同,並比較存入與取出的光子統計特性。藉此培養低光強實驗技術與分析技巧,將實驗室磁光陷阱系統修改成為低光強實驗的可行系統,使實驗控制與數據處理成為標準實驗程序,提供下一階段條件性單光子光源實驗的平台
[1] K.-J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically
induced transparency,” Phys. Rev. Lett., vol. 66, pp. 2593–2596, May 1991.
[2] S. E. Harris, “Electromagnetically induced transparency.,” Phys. Today, vol. 50,
pp. 36–42, 1997.
[3] D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin,
“Storage of light in atomic vapor,” Phys. Rev. Lett., vol. 86, pp. 783–786, Jan
2001.
[4] M. D. Eisaman, A. Andre, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D.
Lukin, “Electromagnetically induced transparency with tunable single-photon
pulses,” Nature, vol. 438, pp. 837–841, Dec. 2005.
[5] R. Short and L. Mandel, “Observation of sub-poissonian photon statistics,” Aug
1983.
[6] R. All´eaume, F. Treussart, J.-M. Courty, and J.-F. Roch, “Photon statistics
characterization of a single-photon source,” New Journal of Physics, vol. 6, p. 85,
2004.
[7] S. E. Harris and Y. Yamamoto, “Photon switching by quantum interference,”
Phys. Rev. Lett., vol. 81, pp. 3611–3614, Oct 1998.
[8] M. Paternostro, M. S. Kim, and B. S. Ham, “Generation of entangled coherent
states via cross-phase-modulation in a double electromagnetically induced transparency
regime,” Physical Review A (Atomic, Molecular, and Optical Physics),
vol. 67, no. 2, p. 023811, 2003.
[9] M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically
induced transparency,” Phys. Rev. Lett., vol. 84, pp. 5094–5097, May 2000.
[10] L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to
17 metres per second in an ultracold atomic gas.,” Nature, vol. 397, pp. 594–598,
1999.
[11] C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical
information storage in an atomic medium using halted light pulses,” Nature,
vol. 409, pp. 490–493, Jan. 2001.
[12] K. B. MacAdam, a. Steinbach, and C. Wieman, “A narrow-band tunable diode
laser system eith grating feedback and a saturated absorption spectrometer for
cs and rb,” Am. J. Phys., vol. 60, p. 1098, 1992.
[13] L. Ricci, M. Weidemuller, T. Esslinger, A. Hemmerich, C. Zimmermann,
V. Vuletic, W. Konig, and T. W. Hansch, “A compact grating-stabilized diode
laser system for atomic physics,” Optics Communications, vol. 117, pp. 541–549,
June 1995.
[14] “Focus on single photons on demand,” New Journal of Physics, vol. 6, 2004.
[15] A. C. Wilson, J. C. Sharpe, C. R. McKenzie, P. J. Manson, and D. M.Warrington,
“Narrow-linewidth master-oscillator power amplifier based on a semiconductor
tapered amplifier,” Applied Optics, vol. 37, p. 4871, 1998.