簡易檢索 / 詳目顯示

研究生: 王聖豪
Wang, Sheng-Hao
論文名稱: 紫外可見光光譜儀暨頂空固相微萃取結合氣相層析質譜儀於食用油脂之指紋建立與識別
Fingerprinting and Identification of Edible Oils by UV-Vis and HS-SPME-GC/MS
指導教授: 凌永健
Ling, Yong-Chien
口試委員: 黃賢達
Huang, Hsien-Da
朱立岡
Chu, Li-Kang
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 302
中文關鍵詞: 食用油紫外可見光光譜儀頂空固相微萃取指標化合物氣相層析質譜儀揮發性有機化合物
外文關鍵詞: edible oil, Ultraviolet-visible spectrophotometer, headspace solid-phase microextraction, marker compound, Gas chromatograph/mass spectrometer, volatile organic compound
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 食用油是我們生活中必攝取的物質,其重要性不可言喻。近年來,關於油品的食安議題層出不窮,其中,黑心用油最直接地影響並危害社會大眾的健康,造成人民在選購油品時的種種疑慮與心理上的恐慌。此事件的爆發凸顯國家對於市售各種油品檢測與篩查的不足,未能為全國人民做好食安第一線的把關。
    本研究透過紫外-可見光光譜儀(UV-Vis)與頂空固相微萃取法(HS-SPME)結合氣相層析質譜儀(GC-MS),針對市售的各類油品進行光譜與質譜判讀及揮發性化合物的成分分析。UV-Vis選擇190 nm至400 nm的波段進行吸收圖譜掃描;GC-MS則選擇譜峰面積大於0.1%以上之峰訊。
    光譜結果觀察到相同油種的光譜波形相近,能有效識別不同油種;質譜定性結果則發現9種獨特存在不同油種的指標化合物(Marker Compound),利用不同組分建置247張光譜指紋圖與182張質譜指紋圖,並結合統計軟體分析,建立完整的單一油種快篩及識別系統,成功區分16種單一油種。透過相同油種個別組分之指紋圖譜,其濃度變化可作為油脂酸敗程度的指標。另外,亦成功追蹤由所建立之指紋圖譜中所發現隱性毒性物質的可能來源。


    In our daily life, edible oil is one of the most essential substances that we can’t live without, which nutrition is important for human absorbing. Recently, food safety issues related to edible oils have come out one after the other. Among them, oil adulteration plays the most serious part and directly affects our health, which causes consumers’ panic and trepidation. All of the occurence of these events clearly tells that the government did not pay good attention to food safety inspection.
    In this study, we apply Ultraviolet-visible spectroscopy and HS-SPME (Headspace-Solid Phase Microextraction) combined with GC-MS to obtain spectrum and volatile organic compounds fingerprints to execute interpretation and identification of edible oils. Spectrophotometric analysis involves determination of wavelength from 190nm to 400nm. Peak area of chromatogram is selected greater than 0.1%.
    We establish spectrum and mass fingerprints of all different kinds of edible oils and find out some similar trends and unique marker volatile compounds in them. Combining with statistical software analysis, we successfully built an identifying system of edible oils. In addition, we observe the concentration variation of multiple components as freshness indicator of edible oils and figure out the possible recessive toxic substance source that is detected in some edible oils.

    目錄 圖目錄 IV 表目錄 VI 第一章 緒論 1 1-1 研究動機與目的 1 1-2 油脂概述 2 1-2-1飽和脂肪酸 2 1-2-2單元不飽和脂肪酸 2 1-2-3多元不飽和脂肪酸 3 1-2-4反式脂肪酸 3 1-3 食用油製程 4 1-3-1食用植物油 4 1-3-2食用動物油 5 1-4 食用油精煉 8 1-5 食用油改性 10 1-5-1油脂氫化 10 1-5-2油脂交脂化 10 1-6油脂劣敗因子 11 1-7多變數統計分析 13 1-7-1因素分析 13 1-7-2主成分分析 14 1-8 儀器原理 16 1-8-1紫外-可見光光譜儀 16 1-8-2氣相層析質譜儀 17 第二章 食用油之吸收光譜分析 19 2-1 前言 19 2-2 實驗部分 19 2-2-1實驗流程 19 2-2-2實驗設備與藥品 20 2-2-3樣品來源 21 2-3 結果與討論 21 2-3-1樣品槽材質選擇 21 2-3-2光譜圖指紋建立 23 2-3-3分析結果 23 第三章 食用油中揮發性有機化合物分析 60 3-1 揮發性物質 60 3-2 實驗方法 61 3-2-1固相微萃取法 61 3-2-2固相微萃取法原理 62 3-2-3固相微萃取模式 63 3-2-4固相微萃取法影響因子 65 3-3實驗部分 68 3-3-1實驗流程 68 3-3-2實驗設備 69 3-3-3樣品來源 69 3-4結果與討論 76 3-4-1揮發性物質指紋圖譜定性分析 76 3-4-2指紋圖譜建立 77 3-4-3統計分析結果 79 第四章 食用油中隱性毒性物質 290 4-1前言 290 4-2實驗部分 290 4-2-1實驗流程 290 4-2-2實驗藥品 291 4-3結果與討論 291 第五章 結論與展望 295 第六章 參考文獻 296 圖目錄 圖1-1. 濕式採油法製程 7 圖1-2. 乾式採油法製程 7 圖1-3. 分子電子的能階躍遷圖 18 圖1-4. 四極柱質量分析器 18 圖2-1. 樣品前處理流程示意圖 29 圖2-2. 四種材質樣品槽吸收光譜圖 30 圖2-3. 四種材質樣品槽穿透光譜圖 30 圖2-4. 植物油指紋光譜圖 31 圖2-5. 動物油指紋光譜圖 42 圖2-6. 植物油因素分析圖 46 圖2-7. 單一植物油因素分析圖 46 圖2-8. 芥花油12、葵花油8標籤錯誤因素分析圖 49 圖2-9. 單一動物油種因素分析圖 50 圖3-1. Hamilton 7000型注射針改裝之固相微萃取裝置 70 圖3-2. 吸收型與吸附型纖維萃取機制比較 71 圖3-3. 吸附時間對固相微萃取的影響 72 圖3-4. HS-SPME-GC/MS萃取流程示意圖 73 圖3-5. 植物油揮發性化合物氣相層析指紋圖譜 132 圖3-6. 動物油揮發性化合物氣相層析指紋圖譜 184 圖3-7. 植物油指紋圖譜(不同油種) 223 圖3-8. 動物油指紋圖譜(不同油種) 236 圖3-9. 植物油指紋圖譜(相同油種) 246 圖3-10. 動物油指紋圖譜(相同油種) 270 圖3-11. 植物油揮發物質主成分分析圖 286 圖3-12. 芝麻油總離子層析圖中2,5-二乙基吡嗪相對強度比較 287 圖3-13. 單一植物油種橄欖油揮發物質主成分分析圖 288 圖3-14. 動物油揮發物質主成分分析圖 289 圖3-15. 動物油(移除魚油)揮發物質主成分分析圖 289 圖4-1. 同位素內標法(d-6苯、苯)離子層析圖 292 圖4-2. 食品級六號萃取溶劑總離子層析圖 293 圖4-3. 工業級六號萃取溶劑總離子層析圖 294 表目錄 表2-1. 樣品前處理步驟 28 表2-2. 油樣資料(植物油、動物油) 51 表3-1. 商業化SPME纖維 74 表3-2. 氣相層析質譜儀四極柱質譜儀儀器參數 75 表3-3. 植物油揮發性化合物指紋圖譜定性分析結果 87 表3-4. 動物油揮發性化合物指紋圖譜定性分析結果 113 表3-5. 揮發性化合物結果整理(植物油) 130 表3-6. 揮發性化合物結果整理(動物油) 131 表4-1. 苯分析物定量結果 292 表4-2. 食品級六號萃取溶劑主要物質 293 表4-3. 單點檢量線法測定苯濃度 293

    1. Bangladesh J. Sci. Ind. Res. 2007, 42 (3), 311-316.
    2. Keys, A.; Anderson, J. T.; Grande, F., Serum cholesterol response
    to changes in the diet. Metabolism 1965, 14 (7), 776-787.
    3. CYBERLIPID CENTER
    http://www.cyberlipid.org/glycer/glyc0005.htm.
    4. 陳譯庭. 米麩油的攝取對第2型糖尿病患者血脂質及胰島素抗性之影響. 台北醫學
    大學, 2008.
    5. Calvani, M.; Benatti, P., Polyunsaturated Fatty Acids (PUFA)
    Sigma-Tou SPA 43pp, 2003.
    6. Willett, W. C.; Stampfer, M. J.; Manson, J. E.; Colditz, G. A.;
    Speizer, F. E.; Rosner, B. A.; Hennekens, C. H.; Sampson, L. A.,
    Intake of trans fatty acids and risk of coronary heart disease
    among women. The Lancet 1993, 341 (8845), 581-585.
    7. Mensink, R. P.; Katan, M. B., Effect of dietary trans fatty acids
    on high-density and low-density lipoprotein cholesterol levels in
    healthy subjects. New England Journal of Medicine 1990, 323 (7),
    439-445.
    8. Hamm, W.; Hamilton, R. J.; Calliauw, G., Edible oil processing.
    John Wiley & Sons, 2013.
    9. Depmer, W. Preparation of soybeans and their effect on solvent-
    extraction, translated from Fette, Seifen, Anstrichmittel, Die
    Ernaerungsindustrie (Industrieverlag Von Hernhaussen K.G.
    Hamburg), 1963, 65, 456-469.
    10. Woodgate, S.; Van Der Veen, J., The role of fat processing and
    rendering in the European Union animal production industry.
    Biotechnologie, agronomie, société et environnement 2004, 8 (4),
    283-294.
    11. Eapen, K.; Kalbag, S.; Subrahmanyan, V., Key operations in the
    wet-rendering of peanut for the isolation of protein, oil and
    starch. Journal of the American Oil Chemists' Society 1966, 43
    (10), 585-589.
    12. Dry rendering of fats. Google Patents, 2, 875, 222, 1959.
    13. Segers, J., Superdegumming, a new degumming process and its
    effect on the effluent problems of edible oil refining. European
    Journal of Lipid Science and Technology 1982, 84 (S1), 543-546.
    14. Diosady, L.; Sleggs, P.; Kaji, T., Chemical degumming of canola
    oils. Journal of the American Oil Chemists’ Society 1982, 59
    (7), 313-316.
    15. 董建林; 魏冰, 高酸值油脂助脱色与酯化脱酸工艺的研究. 中国油脂 2000, 25
    (6), 82-85.
    16. Lee, A. P.; King, W. G., Edible oil deodorizing equipment and
    methods. Journal of the American Oil Chemists' Society 1937, 14
    (10), 263-269.
    17. Normann, Wilhelm, et al. Hydrogenation of higher fatty acids.
    U.S. Patent No 2,127,367, 1938.
    18. 刘军海; 裘爱泳. 植物油氢化技术研究进展 (Ⅰ). 中国油脂,
    2003, 28(8), 13-17.
    19. Liu, L., How is chemical interesterification initiated:
    Nucleophilic substitution or α-proton abstraction? Journal of
    the American Oil Chemists' Society 2004, 81 (4), 331-337.
    20. Erickson, D. R., Edible fats and oils processing: basic
    principles and modern practices: World Conference Proceedings.
    The American Oil Chemists Society, 1990.
    21. Dijkstra, A. J., Revisiting the mechanisms of low-temperature,
    base-catalysed ester interchange reactions. Oléagineux, Corps
    gras, Lipides 2008, 15 (3), 208-212.
    22. 周胜强. 油脂氧化酸败的主要诱因——光氧化. 四川粮油科技, 2003, 20(2),
    28-30.
    23. CHOE, Eunok; MIN, David B. Mechanisms and factors for edible
    oil oxidation. Comprehensive reviews in food science and food
    safety, 2006, 5(4), 169-186.
    24. Thompson, Bruce. Exploratory and confirmatory factor analysis:
    Understanding concepts and applications. American Psychological
    Association, 2004.
    25. Malinowski, Edmund R. Factor analysis in chemistry. Wiley, 2002.
    26. Pearson, K., LIII. On lines and planes of closest fit to systems
    of points in space. The London, Edinburgh, and Dublin
    Philosophical Magazine and Journal of Science 1901, 2 (11), 559-
    572.
    27. Abdi, H.; Williams, L. J., Principal component analysis. Wiley
    interdisciplinary reviews: computational statistics 2010, 2 (4),
    433-459.
    28. Perkampus, H.-H., UV-VIS Spectroscopy and its Applications.
    Springer Science & Business Media, 2013.
    29. Hübschmann, H.-J., Handbook of GC-MS: fundamentals and
    applications. John Wiley & Sons, 2015.
    30. Yang, H.; Irudayaraj, J.; Paradkar, M. M., Discriminant analysis
    of edible oils and fats by FTIR, FT-NIR and FT-Raman
    spectroscopy. Food Chemistry 2005, 93 (1), 25-32.
    31. Cicolella, A., Volatile Organic Compounds (VOC): definition,
    classification and properties. Revue des maladies respiratoires
    2008, 25 (2), 155-163.
    32. Slater, G. F.; Dempster, H. S.; Sherwood Lollar, B.; Ahad, J.,
    Headspace analysis: a new application for isotopic
    characterization of dissolved organic contaminants.
    Environmental Science & Technology 1999, 33 (1), 190-194.
    33. Debonneville, C.; Chaintreau, A., Online clean‐up of volatile
    compounds in complex matrices for GC‐MS quantification: testing
    with fragranced consumer products. Flavour and fragrance journal
    2014, 29 (5), 267-276.
    34. Bicchi, C.; Iori, C.; Rubiolo, P.; Sandra, P., Headspace
    sorptive extraction (HSSE), stir bar sorptive extraction (SBSE),
    and solid phasemicroextraction (SPME) applied to the analysis of
    roasted arabica coffee and coffee brew. Journal of agricultural
    and food chemistry 2002, 50 (3), 449-459.
    35. Psillakis, E.; Kalogerakis, N., Developments in single-drop
    microextraction. TrAC Trends in Analytical Chemistry 2002, 21
    (1), 54-64.
    36. Zhang, J.; Hu, B., Liquid‐Liquid Extraction (LLE). Separation
    and Purification Technologies in Biorefineries 2013, 61-78.
    37. Rizvi, S. S.; Benado, A.; Zollweg, J.; Daniels, J.,
    Supercritical fluid extraction: fundamental principles and
    modeling methods. Food technology (USA) 1986.
    38. Arthur, C. L.; Pawliszyn, J., Solid phase microextraction with
    thermal desorption using fused silica optical fibers. Analytical
    chemistry 1990, 62 (19), 2145-2148
    39. Vas, G.; Vekey, K., Solid‐phase microextraction: a powerful
    sample preparation tool prior to mass spectrometric analysis.
    Journal of mass spectrometry 2004, 39 (3), 233-254.
    40. Holadová, K.; Prokůpková, G.; Hajšlová, J.; Poustka, J.,
    Headspace solid-phase microextraction of phthalic acid esters
    from vegetable oil employing solvent based matrix modification.
    Analytica Chimica Acta 2007, 582 (1), 24-33.
    41. Pawliszyn, J., Solid phase microextraction: theory and practice.
    John Wiley & Sons: 1997.
    42. Fucci, N.; De Giovanni, N.; Chiarotti, M., Simultaneous
    detection of some drugs of abuse in saliva samples by SPME
    technique. Forensic Science International 2003, 134 (1), 40-45.
    43. Kataoka, H.; Lord, H. L.; Pawliszyn, J., Applications of solid-
    phase microextraction in food analysis. Journal of
    Chromatography A 2000, 880 (1), 35-62.
    44. Basheer, C.; Lee, H. K., Hollow fiber membrane-protected solid-
    phase microextraction of triazine herbicides in bovine milk and
    sewage sludge samples. Journal of Chromatography A 2004, 1047
    (2), 189-194.
    45. De Calle García, D.; Reichenbächer, M.; Danzer, K.; Hurlbeck,
    C.; Bartzsch, C.; Feller, K.-H., Use of solid-phase
    microextraction-capillary-gas chromatography (SPME-CGC) for the
    varietal characterization of wines by means of chemometrical
    methods. Fresenius' journal of analytical chemistry 1998, 360
    (7), 784-787.
    46. Górecki, T.; Yu, X.; Pawliszyn, J., Theory of analyte extraction
    by selected porous polymer SPME fibres. Analyst 1999, 124 (5),
    643-649.
    47. 邓红; 王小宏; 贺小化; 夏秋敏; 郭玉蓉; 孟永宏, 榨前分离苹
    果清汁中香气成分分析. 食品科学技术学报 2013, 31 (5), 18-23.
    48. Supelco, S., A practical guide to quantitation with solid phase
    microextraction. Bulletin 2001, 929.
    49. Rocha, S.; Ramalheira, V.; Barros, A.; Delgadillo, I.; Coimbra,
    M.A., Headspace solid phase microextraction (SPME) analysis of
    flavor compounds in wines. Effect of the matrix volatile
    composition in the relative response factors in a wine model.
    Journal of Agricultural and Food Chemistry 2001, 49 (11), 5142-
    5151.
    50. Buchholz, K. D.; Pawliszyn, J., Optimization of solid-phase
    microextraction conditions for determination of phenols.
    Analytical Chemistry 1994, 66 (1), 160-167.
    51. Menéndez, J. F.; Sánchez, M. F.; Urıa, J. S.; Martınez, E. F.;
    Sanz-Medel, A., Static headspace, solid-phase microextraction
    and headspace solid-phase microextraction for BTEX determination
    in aqueous samples by gas chromatography. Analytica Chimica Acta
    2000, 415 (1), 9-20.
    52. 中華民國行政院環境保護署-水中揮發性有機化合物檢測方法
    -吹氣捕捉/氣相層析質譜儀法 (NIEA W785.55B)
    53. Romero, I.; García-González, D.; Aparicio-Ruiz, R.; Morales, M.,
    Validation of SPME–GCMS method for the analysis of virgin olive
    oil volatiles responsible for sensory defects. Talanta 2015,
    134, 394-401.

    QR CODE