研究生: |
林彥君 Yan-Jyun Lin |
---|---|
論文名稱: |
以多壁奈米碳管及碳纖維補強酚醛樹脂之複合材料機械性質研究 Mechanical Properties of Phenolic Matrix Reinforced by MWNT and Carbon Fiber |
指導教授: |
葉孟考 博士
Meng-Kao Yeh 戴念華 博士 Nyan-Hwa Tai |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 多壁碳管 、複合材料 |
外文關鍵詞: | carbon nanotube, composites |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一九九一年日本科學家飯島澄男發現奈米碳管後,由於其極佳的機械性質與物理性質,科學家們紛紛以碳管為補強材,補強高分子基材與陶瓷基材,顯示碳管可以提升基材各項機械性質。本文以短碳纖維混碳管補強熱固性高分子材料酚醛樹脂,探究補強材對複合材料機械性質之影響,並將纖維編製成球狀,置於CVD爐管中使其與碳管混合,可有效提昇複合材料之機械性質,碳管之界面剪應力與比表面積明顯優於碳纖維,且由FESEM觀測得知碳管與基材間結合良好,碳管補強效果較碳纖維佳;但當兩者混合時由於碳管聚集過大造成應力集中,導致碳管成為此混材結構中之雜質,降低整體材料之機械性質。文中並以Halpin-Tsai方程式嵌合實驗數據,具有不錯之效果;另外也以示差掃描熱量計(DSC)探討補強物對複合材料熱性質之影響,因碳管軸向熱傳導性佳導致整體複合材料因較易活化使玻璃轉換溫度下降,最後以場發射掃描式電子顯微鏡觀測材料之破壞面,觀察出碳管與基材間結合不錯,並發現多壁碳管獨特之刀銷效應(sword-in-sheath)。
Since the carbon nanotubes (CNTs) were discovered by Iijima, researchers used CNTs as reinforcement to enhance the mechanical properties of plastic or ceramic matrices. In this study, short carbon fibers and CNTs were combined to reinforce the phenolic resin and the mechanical properties of the hybrid composites were investigated experimentally. Besides, the ball-shaped continuous carbon fibers were placed in the middle of furnace and multi-walled carbon nanotubes (MWNTs) were produced by CVD process on the fibers to make the special reinforcement. The tensile test results showed that the hybrid composites had the lowest mechanical properties due to larger aggregate size of MWNTs, when compared with the composites reinforced by MWNTs or short fibers. The Halpin-Tsai equation was effectively used to fit the experimental mechanical properties. The differential scanning calorimetry (DSC) was used to investigate the glass transition temperature of composites. The composites with higher percentage of MWNTs have a lower glass transition temperature due to better longitudinal thermal property of MWNTs. Finally the FESEM was used to observe the fracture surface of composites. The results showed that the surface of MWNTs was covered of phenolic resin which resulted in good interaction between the MWNTs and the phenolic resin.
參考文獻
1. 馬遠榮, “奈米科技,” 商周出版社, 台灣台北, 2002.
2. 成會明, “奈米碳管,” 五南圖書出版股份有限公司, 台灣台北, 2004.
3. P. Scharff, “New Carbon Materials for Research and Technology,” Carbon, Vol. 36, pp. 481-486, 1998.
4. E. T. Thostenson, Z. Ren, and T. W. Chou, “Advances in the Science and Technology of Carbon Nanotubes and Their Composites: a Review,” Composites Science and Technology, Vol. 61, pp. 1899-1912, 2001.
5. K. T. Lau, and D. Hui, “The Revolutionary Creation of New Advanced Materials – Carbon Nanotube Composites,” Composites Part B: Engineering, Vol. 33, pp. 263-277, 2002.
6. S. Xie, W. Li, Z. Pan, B. Chang, and L. Sun, “Carbon Nanotubes Arrays,” Materials Science and Engineering A, Vol. 286, pp. 11-15, 2000.
7. M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, “Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load,” Science, Vol. 287, pp. 637-640, 2000.
8. B. G. Demczyk, Y. M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, and R. O. Ritchie, “Direct Mechanical Measurement of the Tensile Strength and Elastic Modulus of Multiwalled Carbon Nanotubes,” Materials Science and Engineering A, Vol. 334, pp. 173-178, 2002.
9. Z. Yao, C.C. Zhu, M. Cheng, and J. Liu, “Mechanical Properties of Carbon Nanotube by Molecular Dynamics Simulation,” Computational Materials Science, Vol. 22, pp. 180-184, 2001.
10. T. Kuzumaki, T. Hayashi, H. Ichinose, K. Miyazawa, K. Ito, and Y. Ishida, “In-Situ Observed Deformation of Carbon Nanotubes,” Philosophical Magazine, A, Vol. 77, pp. 1461-1469, 1998.
11. R. F. Gibson, “Principles of Composite Material Mechanics,” McGraw-Hill, New York, 1994.
12. K.T. Lau, S.Q. Shi, and H.-M. Cheng, “Micro-Mechanical Properties and Morphological Observation on Fracture Surfaces of Carbon Nanotube Composites Pre-Treated at Different Temperatures,” Composites Science and Technology, Vol. 63, pp. 1161–1164, 2003.
13. K. T. Lau, and D. Hui, “Effectiveness of Using Carbon Nanotubes as Nano-Reinforcements for Advanced Composite Structure,” Letters to the Editor / Carbon, Vol. 40, pp. 1065-1066, 2002.
14. J.B. Bai, and A. Allaoui, “Effect of the Length and the Aggregate Size of MWNTs on the Improvement Efficiency of the Mechanical and Electrical Properties of Nanocomposites—Experimental Investigation,” Composites: Part A, Vol. 34, pp. 689–694, 2003.
15. D. Qian, E. C. Dickey, R. Andrews and T. Rantell, “Load Transfer and Deformation Mechanisms in Carbon Nanotube-Polystyrene Composites,” Applied Physics Letters, Vol. 76, pp. 2868-2870, 2000.
16. Y. Ren, F. Li, H.-M. Cheng and K. Liao, “Tension–Tension Fatigue Behavior of Unidirectional Single-Walled Carbon Nanotube Reinforced Epoxy Composite,” Letters to the Editor / Carbon, Vol. 41, pp. 2159– 2179 2003.
17. J. Bai, “Evidence of the Reinforcement Role of Chemical Vapour Deposition Multi-Walled Carbon Nanotubes in a Polymer Matrix,” Letters to the Editor/Carbon, Vol. 41, pp. 1325-1328, 2003.
18. A. Allaoui, S. Bai, H.M. Cheng and J.B. Bai, “Mechanical and Electrical Properties of a MWNT/Epoxy Composite,” Composites Science and Technology, Vol. 62, pp. 1993–1998, 2002.
19. 劉家豪, “多壁奈米碳管/酚醛樹脂複合材料之機械性質研究,”清華大學動力機械工程研究所碩士論文, 2004.
20. W. Tang, M. H. Santare and S. G. Advani, “Melt Processing and Mechanical Property Characterization of Multi-Walled Carbon Manotube/ High Density Polyethylene (MWNT/HDPE) Composite Films,” Carbon, Vol. 41, pp. 2779-2785, 2003.
21. M. Olek, J. Ostrander, S. Jurga, H. Mohwald, N. Kotov, K. Kempa, and M. Giersig, “Layer-by-Layer Assembled Composites from Multiwall Carbon Nanotubes with Different Morphologies,” Nano Letters, Vol. 4, pp. 1889-1895, 2004.
22. C. B. Mo, S. I. Cha, K. T. Kim, K. H. Lee and S. H. Hong, “Fabrication of Carbon Nanotube Reinforced Alumina Matrix Nanocomposite by Sol–gel Process,” Materials Science and Engineering A, Vol. 395, pp. 124–128, 2005.
23. D.S. Lim, J.W. An and H. J. Lee, “Effect of Carbon Nanotube Addition on the Tribological Behavior of Carbon/Carbon Composites,” Wear, Vol. 252, pp. 512–517, 2002.
24. S.R. Dong, J.P. Tu and X.B. Zhang, “An Investigation of the Sliding Wear Behavior of Cu-matrix Composite Reinforced by Carbon Nanotubes,” Materials Science and Engineering A, Vol. 313,pp. 83–87, 2001.
25. F. H. Gojny, J. Nastalczyk, Z. Roslaniec and K. Schulte, “Surface Modified Multi-Walled Carbon Nanotubes in CNT/Epoxy-Composites,” Chemical Physics Letters, Vol. 370, pp. 820-824, 2003.
26. Y. H. Li, J. Wei, X. Zhang, C. Xu, D. Wu, L. Lu and B. Wei, “Mechanical and Electrical Properties of Carbon Nanotube Ribbons,” Chemical Physics Letters, Vol. 365, pp. 95-100, 2002.
27. J. E. Fischer, W. Zhou, J. Vavro, M. C. Llaguno, C. Guthy and R. Haggenmueller, “Magnetically Aligned Single Wall Carbon Nanotube Films: Preferred Orientation and Anisotropic Transport Properties,” Journal of Applied Physics, Vol. 93, pp. 2157-2163, 2003.
28. D.A. Walters, M.J. Casavant, X.C. Qin, C.B. Huffman, P.J. Boul, L.M. Ericson, E.H. Haroz, M.J. O’Connell, K. Smith, D.T. Colbert and R.E. Smalley, “In-Plane-Aligned Membranes of Carbon Nanotubes,” Chemical Physics Letters, Vol. 338, pp. 14-20, 2001.
29. M. Fujiwara, E. Oki, M. Hamada, Y. Tanimoto, I. Mukouda and Y. Shimomura, “Magnetic Orientation and Magnetic Properties of a Single Carbon Nanotube,” Journal of Physical Chemistry, A, Vol. 105, pp. 4383-4386, 2001.
30. T. Kimura, H. Ago, M. Tobita, S. Ohshima, M. Kyotani and M. Yumura, “Polymer Composites of Carbon Nanotubes Aligned by Magnetic Field,” Advanced Materials, Vol. 14, pp. 1380-1383, 2002.
31. E. S. Choi, J. S. Brooks, D. L. Eaton, H. Garmestani, D. Li and K. Dahmen, “Enhancement of Thermal and Electrical Properties of Carbon Nanotube Polymer Composites by Magnetic Field Processing,” Journal of Applied Physics, Vol. 94, pp. 6034-6039, 2003.
32. H. Garmestani, M. S. Al-Haik, K. Dahmen, R. Tannenbaum, D. Li, S. S. Sablin and M. Y. Hussaini, “Polymer-Mediated Alignment of Carbon Nanotubes under High Magnetic Fields,” Advanced Materials, Vol. 15, pp. 1918-1921, 2003.
33. J. Hone, M. C. Llaguno, N. M. Nemes, A. T. Johnson, J. E. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt and R. E. Smalley, “Electrical and Thermal Transport Properties of Magnetically Aligned Single Wall Carbon Nanotube Films,” Applied Physics Letters, Vol. 77, pp. 666-668, 2000.
34. A. Peigney, E. Flahaut, C. Laurent, F. Chastel and A. Rousset, “Aligned Carbon Nanotubes in Ceramic-Matrix Nanocomposites Prepared by High-Temperature Extrusion,” Chemical Physics Letters, Vol. 352, pp. 20-25, 2002.
35. C. A. Cooper, D. Ravich, D. Lips, J. Mayer and H. D. Wagner, “Distribution and Alignment of Carbon Nanotubes and Nanofibrils in a Polymer Matrix,” Composites Sciences and Technology, Vol. 62, pp. 1105-1112, 2002.
36. J.R. Wood, Q. Zhao and H.D. Wagner, “Orientation of Carbon Nanotubes in Polymers and Its Detection by Raman Spectroscopy,” Composites: Part A, Vol. 32, pp. 391-399, 2001.
37. E. T. Thostenson, and T.W. Chou, “Aligned Multi-Walled Carbon Nanotube-Reinforced Composites: Processing and Mechanical Characterization,” Journal of Physics D: Applied Physics, Vol. 35, pp. 77-80, 2002.
38. L. Jin, C. Bower and O. Zhou, “Alignment of Carbon Nanotubes in a Polymer Matrix by Mechanical Stretching,” Applied Physics Letters, Vol. 73, pp. 1197-1199, 1998.
39. W. Feng , X.D. Bai , Y.Q. Lian , J. Liang , X.G. Wang, and K. Yoshino, “Well-Aligned Polyaniline /Carbon-Nanotube Composite Films Grown by In-Situ Aniline Polymerization,” Carbon, Vol. 41, pp. 1551-1557, 2003.
40. P. M. Ajayan, O. Stephan, C. Colliex and D. Trauth, “Aligned Carbon Nanotube Arrays from by Cutting a Polymer Resin-Nanotube Composites,” Science, Vol. 265, pp. 1212-1214, 1994.
41. A. M. Fennimore, T. D. Yuzvinsky, Wei-Qiang Han, M. S. Fuhrer, J. Cumings and Zettl, “Rotational Actuators Based on Carbon Nanotubes,” Nature, Vol. 424, pp. 408-410, 2003.
42. F. H. Gojny and K. Schulte, “Functionalisation Effect on the Thermo-Mechanical Behaviour of Multi-wall Carbon Nanotube/Epoxy-Composites,” Composites Science and Technology, Vol. 64, pp. 2303–2308, 2004.
43. Y. Wang, R. Cheng, L. Liang and Y. Wang, “Study on the Preparation and Characterization of Ultra-high Molecular Weight Polyethylene–Carbon Nanotubes Composite Fiber,” Composites Science and Technology, Vol. 65, pp. 793–797, 2005..
44. 大島敬治, 賴狄陽 譯, “塑膠大全,” 復文書局, 台灣台北
45. 村上新一, 洪純仁 譯, “酚醛樹脂,” 復文出版社, 台灣台北, 1981.
46. 許明發, “碳、碳纖維、碳/碳複合材料之加工技術及應用,” 滄海書局, 台灣, 1997.
47. 汪建民, “材料分析,” 民全書局, 台灣台北, 1998.
48. ASTM D796-65, “Standard Practice for Compression Molding Test Specimens of Phenolic Molding Compounds,” Annual Book of ASTM Standards, Vol. 8.2, 1981.
49. ASTM D638-82a, “Standard Test Method for Tensile Properties of Plastics,” Annual Book of ASTM Standards, Vol. 8.2, 1981.
50. 杜善, 王彪, “複合材料細觀力學,” 科學出版社, 1998
51. M. S. P. Shaffer, X. Fan and A. H. Windle, “Dispersion and Packing of Carbon
Nanotubes,” Carbon, Vol. 36, pp. 1603-1612, 1998.