研究生: |
張育誠 Chang, Yu-Cheng |
---|---|
論文名稱: |
靜態同步補償器之硬體迴路即時模擬與驗證 Hardware-in-the-Loop Real-Time Simulations and Verifications of Static Synchronous Compensators |
指導教授: |
朱家齊
Chu, Chia-Chi |
口試委員: |
吳有基
Wu, Yu-Chi 林堉仁 Lin, Yu-Jen |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 66 |
中文關鍵詞: | 電壓源轉換器 、靜態同步補償器控制 、被動控制 、即時模擬平台 、硬體迴路 |
外文關鍵詞: | Voltage-Sourced Converter, STATCOM Control, Passivity-Based Control, Real-Time Simulation Platform, Hardware-in-the-Loop |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著電力系統結構逐漸改變,分散式電源於電網中的穿透率逐漸
增加,以及電力需求日益增加,並且不易增設電廠,所以電力系統
穩定度備受考驗;因此,彈性交流傳輸系統的重要性不可以被忽略,
其中,靜態同步補償器為有潛力的解決方案,是改善電力系統穩定
性的電力電子設備。
此篇論文首先探討電壓源轉換器之架構與控制策略,透過頻率響
應方法,來設計所需的控制器;基於同步框理論,設計鎖相迴路之
補償器,追蹤電壓相位,將交流數值轉為直流數值,簡化三相電壓
源轉換器之控制器設計複雜度;接著研究靜態同步補償器之控制與
功能,由中點並聯補償可以證明,靜態同步補償器可以增加電力系
統暫態穩定度;接著設計實虛功控制器,直流電壓控制器,以及交
流電壓控制器,透過成串的方式,來調節所需控制的命令值;再引
入被動控制方法,透過李亞普諾夫穩定度理論,來設計電流控制器,
並且比較傳統控制和被動控制方法;最後,為了即時模擬靜態同步
補償器與實際電網的互動,因為在實際上,要將現實中的靜態同步
補償器硬體,與實際電網結合,來測試其功能,是相當困難的,必
須在安裝實際的靜態同步補償器之前,要完善的驗證其可行性,因
此於本研究中,使用即時模擬器,建立即時模擬平台,提出模擬方
法和流程,來驗證控制器之可行性。
As the structure of the power system changes day by day, the penetra-
tion of distributed generation units increases in microgrids, and the power
supply can not meet the demand. Thus, the power system stability has been
faced with a lot of challenges. Therefore, the importance of Flexible AC
Transmission System (FACTS) can not be ignored nowadays. One of the
members, Static Synchronous Compensator (STATCOM), is a potential so-
lution to improve the power system stability.
In the thesis, the basic structure and control strategies of a Voltage-
Sourced Converter (VSC) system are investigated at first. Through the fre-
quency loop shaping method, the compensator is properly designed. Based
on the synchronous reference frame theory, the compensator of Phase-Locked
Loop (PLL) is designed in order to track the grid voltage. It can reduce the
complexity of the control the three-phase VSC system. Then, the control
and functionalities of STATCOM are studied, and the passivity-based con-
trol (PBC) method is introduced in order to compare with the conventional
STATCOM control method. Because it is difficult to test the STATCOM
with a real power system, the real-time simulation platform is built in or-
der to interface the STATCOM with a virtual grid, which likes a real one.
Also, the Real-Time Simulator (RTS) is used as a controller to control the
real converter, which is known as Hardware-in-the-Loop (HIL). The sim-
ulation procedure is proposed to verify the feasibility of the STATCOM
control.
[1] A. Yazdani and R. Iravani, Voltage-sourced converters in power systems: model-
ing, control, and applications. John Wiley & Sons, 2010.
[2] H. Akagi, E. H. Watanabe, and M. Aredes, Instantaneous power theory and appli-
cations to power conditioning. John Wiley & Sons, 2007.
[3] R. Ortega, J. A. L. Perez, P. J. Nicklasson, and H. Sira-Ramirez, Passivity-based
control of Euler-Lagrange systems: mechanical, electrical and electromechanical
applications. Springer Science & Business Media, 1998.
[4] F. Shahnia, S. Rajakaruna, and A. Ghosh, Static compensators (STATCOMs) in
power systems. Springer, 2015.
[5] K. Padiyar, “Facts controllers in power transmission and distribution,” 2007.
[6] A. Ghosh and G. Ledwich, Power quality enhancement using custom power de-
vices. Springer Science & Business Media, 2012.
[7] H.-C. Tsai, C.-C. Chu, and S.-H. Lee, “Passivity-based nonlinear statcom con-
troller design for improving transient stability of power systems,” in Transmission
and Distribution Conference and Exhibition: Asia and Pacific, 2005 IEEE/PES,
pp. 1–5, IEEE, 2005.
[8] C.-C. Chu and H.-C. Tsai, “Passivity-based control of upfcs,” in Power Electronics
and Drive Systems, 2009. PEDS 2009. International Conference on, pp. 794–799,
IEEE, 2009.
[9] T.-S. Lee, “Lagrangian modeling and passivity-based control of three-phase ac/dc
voltage-source converters,” IEEE Transactions on Industrial Electronics, vol. 51,
no. 4, pp. 892–902, 2004.
[10] M. Perez, R. Ortega, and J. R. Espinoza, “Passivity-based pi control of switched
power converters,” IEEE Transactions on Control Systems Technology, vol. 12,
no. 6, pp. 881–890, 2004.
[11] L. Harnefors, A. G. Yepes, A. Vidal, and J. Doval-Gandoy, “Passivity-based sta-
bilization of resonant current controllers with consideration of time delay,” IEEE
Transactions on Power Electronics, vol. 29, no. 12, pp. 6260–6263, 2014.
[12] F. M. Serra, C. H. De Angelo, and D. G. Forchetti, “Interconnection and damping
assignment control of a three-phase front end converter,” International Journal of
Electrical Power & Energy Systems, vol. 60, pp. 317–324, 2014.
[13] L. Harnefors, A. G. Yepes, A. Vidal, and J. Doval-Gandoy, “Passivity-based con-
troller design of grid-connected vscs for prevention of electrical resonance insta-
bility,” IEEE Transactions on Industrial Electronics, vol. 62, no. 2, pp. 702–710,
2015.
[14] M. Hilairet, O. Bethoux, M. Ghanes, V. Tanasa, J.-P. Barbot, and M.-D. Normand-
Cyrot, “Experimental validation of a sampled-data passivity-based controller for
coordination of converters in a fuel cell system,” IEEE Transactions on Industrial
Electronics, vol. 62, no. 8, pp. 5187–5194, 2015.
[15] A. Kanchanaharuthai, V. Chankong, and K. A. Loparo, “Transient stability and
voltage regulation in multimachine power systems vis-à-vis statcom and battery
energy storage,” IEEE Transactions on power systems, vol. 30, no. 5, pp. 2404–
2416, 2015.
[16] L. Harnefors, X. Wang, A. G. Yepes, and F. Blaabjerg, “Passivity-based stability
assessment of grid-connected vscs—an overview,” IEEE Journal of emerging and
selected topics in Power Electronics, vol. 4, no. 1, pp. 116–125, 2016.
[17] F. M. Serra, C. H. De Angelo, and D. G. Forchetti, “Application of the modified
ida-pbc for shunt active power filters control,” International Journal of Circuit
Theory and Applications, vol. 44, no. 9, pp. 1717–1729, 2016.
[18] M. Zhang, P. Borja, R. Ortega, Z. Liu, and H. Su, “PID passivity-based control of
port-hamiltonian systems,” IEEE Transactions on Automatic Control, 2017.
[19] F. M. Serra and C. H. De Angelo, “Ida-pbc controller design for grid connected
front end converters under non-ideal grid conditions,” Electric Power Systems Re-
search, vol. 142, pp. 12–19, 2017.
[20] R. V. Meshram, M. Bhagwat, S. Khade, S. R. Wagh, A. M. Stanković, and N. M.
Singh, “Port-controlled phasor hamiltonian modeling and ida-pbc control of solid-
state transformer,” IEEE Transactions on Control Systems Technology, 2017.
[21] J. Wang, X. Mu, and Q.-K. Li, “Study of passivity based decoupling control of
T-NPC pv grid-connected inverter,” IEEE Transactions on Industrial Electronics,
2017.
[22] G. Escobar, A. M. Stankovic, and P. Mattavelli, “An adaptive controller in station-
ary reference frame for d-statcom in unbalanced operation,” IEEE Transactions on
Industrial Electronics, vol. 51, no. 2, pp. 401–409, 2004.
[23] B. Blazic and I. Papic, “Improved d-statcom control for operation with unbal-
anced currents and voltages,” IEEE Transactions on Power Delivery, vol. 21, no. 1,
pp. 225–233, 2006.
[24] B. Lu and B.-T. Ooi, “Nonlinear control of voltage-source converter systems,”
IEEE transactions on power electronics, vol. 22, no. 4, pp. 1186–1195, 2007.
[25] E. Song, A. F. Lynch, and V. Dinavahi, “Experimental validation of nonlinear
control for a voltage source converter,” IEEE Transactions on Control Systems
Technology, vol. 17, no. 5, pp. 1135–1144, 2009.
[26] K. Wang and M. L. Crow, “Power system voltage regulation via statcom internal
nonlinear control,” IEEE Transactions on Power systems, vol. 26, no. 3, pp. 1252–
1262, 2011.
[27] A. Houari, H. Renaudineau, J.-P. Martin, S. Pierfederici, and F. Meibody-Tabar,
“Flatness-based control of three-phase inverter with output lc filter,” IEEE Trans-
actions on Industrial Electronics, vol. 59, no. 7, pp. 2890–2897, 2012.
[28] Y. Liu, N. Watson, K. Zhou, and B. Yang, “Converter system nonlinear modeling
and control for transmission applications—part i: Vsc system,” IEEE Transactions
on Power Delivery, vol. 28, no. 3, pp. 1381–1390, 2013.
[29] S. Yang, P. Wang, and Y. Tang, “Feedback linearization-based current control
strategy for modular multilevel converters,” IEEE Transactions on Power Elec-
tronics, vol. 33, no. 1, pp. 161–174, 2018.
[30] V. Jalili-Marandi, F. J. Ayres, C. Dufour, and J. Bélanger, “Real-time electromag-
netic and transient stability simulations for active distribution networks,” in Inter-
national Conference on Power System Transients (IPST), 2013.
[31] V. Jalili-Marandi, J. Belanger, and F. J. Ayres, “Model-in-the-loop real-time sim-
ulation in phasor domain,” in Industrial Electronics (ISIE), 2014 IEEE 23rd Inter-
national Symposium on, pp. 2280–2284, IEEE, 2014.