簡易檢索 / 詳目顯示

研究生: 張育誠
Chang, Yu-Cheng
論文名稱: 靜態同步補償器之硬體迴路即時模擬與驗證
Hardware-in-the-Loop Real-Time Simulations and Verifications of Static Synchronous Compensators
指導教授: 朱家齊
Chu, Chia-Chi
口試委員: 吳有基
Wu, Yu-Chi
林堉仁
Lin, Yu-Jen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 66
中文關鍵詞: 電壓源轉換器靜態同步補償器控制被動控制即時模擬平台硬體迴路
外文關鍵詞: Voltage-Sourced Converter, STATCOM Control, Passivity-Based Control, Real-Time Simulation Platform, Hardware-in-the-Loop
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著電力系統結構逐漸改變,分散式電源於電網中的穿透率逐漸
    增加,以及電力需求日益增加,並且不易增設電廠,所以電力系統
    穩定度備受考驗;因此,彈性交流傳輸系統的重要性不可以被忽略,
    其中,靜態同步補償器為有潛力的解決方案,是改善電力系統穩定
    性的電力電子設備。
    此篇論文首先探討電壓源轉換器之架構與控制策略,透過頻率響
    應方法,來設計所需的控制器;基於同步框理論,設計鎖相迴路之
    補償器,追蹤電壓相位,將交流數值轉為直流數值,簡化三相電壓
    源轉換器之控制器設計複雜度;接著研究靜態同步補償器之控制與
    功能,由中點並聯補償可以證明,靜態同步補償器可以增加電力系
    統暫態穩定度;接著設計實虛功控制器,直流電壓控制器,以及交
    流電壓控制器,透過成串的方式,來調節所需控制的命令值;再引
    入被動控制方法,透過李亞普諾夫穩定度理論,來設計電流控制器,
    並且比較傳統控制和被動控制方法;最後,為了即時模擬靜態同步
    補償器與實際電網的互動,因為在實際上,要將現實中的靜態同步
    補償器硬體,與實際電網結合,來測試其功能,是相當困難的,必
    須在安裝實際的靜態同步補償器之前,要完善的驗證其可行性,因
    此於本研究中,使用即時模擬器,建立即時模擬平台,提出模擬方
    法和流程,來驗證控制器之可行性。


    As the structure of the power system changes day by day, the penetra-
    tion of distributed generation units increases in microgrids, and the power
    supply can not meet the demand. Thus, the power system stability has been
    faced with a lot of challenges. Therefore, the importance of Flexible AC
    Transmission System (FACTS) can not be ignored nowadays. One of the
    members, Static Synchronous Compensator (STATCOM), is a potential so-
    lution to improve the power system stability.
    In the thesis, the basic structure and control strategies of a Voltage-
    Sourced Converter (VSC) system are investigated at first. Through the fre-
    quency loop shaping method, the compensator is properly designed. Based
    on the synchronous reference frame theory, the compensator of Phase-Locked
    Loop (PLL) is designed in order to track the grid voltage. It can reduce the
    complexity of the control the three-phase VSC system. Then, the control
    and functionalities of STATCOM are studied, and the passivity-based con-
    trol (PBC) method is introduced in order to compare with the conventional
    STATCOM control method. Because it is difficult to test the STATCOM
    with a real power system, the real-time simulation platform is built in or-
    der to interface the STATCOM with a virtual grid, which likes a real one.
    Also, the Real-Time Simulator (RTS) is used as a controller to control the
    real converter, which is known as Hardware-in-the-Loop (HIL). The sim-
    ulation procedure is proposed to verify the feasibility of the STATCOM
    control.

    摘要 i Abstract ii Acknowledgements iv 1 Introduction 1 1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Main Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Voltage-Sourced Converter Modelling, Control and Simulations 4 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 DC-to-AC Half-Bridge Converter . . . . . . . . . . . . . . . . . . . . 4 2.2.1 Circuit Structure . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2.2 Pulse-Width Modulation . . . . . . . . . . . . . . . . . . . . . 5 2.2.3 Estimation of Inductor Current Ripple . . . . . . . . . . . . . . 6 2.2.4 Control of Half-Bridge Converter . . . . . . . . . . . . . . . . 9 2.3 Two-Level,Three-Phase Voltage-Sourced Converter . . . . . . . . . . . 18 2.3.1 abc-dq0 Frame Transformation . . . . . . . . . . . . . . . . . . 18 2.3.2 Phase-Locked Loop . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.3 Control in Synchronous Reference Frame . . . . . . . . . . . . 26 2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3 Static Synchronous Compensator 29 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 The Functionalities of STATCOM . . . . . . . . . . . . . . . . . . . . 29 3.3 Modeling of STATCOM . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.4 Conventional Cascade V dc and V ac Control . . . . . . . . . . . . . . . . 36 3.4.1 Real/Reactive Power Control . . . . . . . . . . . . . . . . . . . 36 3.4.2 DC Voltage Control . . . . . . . . . . . . . . . . . . . . . . . . 37 3.4.3 AC Voltage Control . . . . . . . . . . . . . . . . . . . . . . . . 42 3.5 Passivity-Based Control . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.5.1 Euler Lagrange Modelling of VSC . . . . . . . . . . . . . . . . 44 3.5.2 Euler Lagrange Model in dq-Frame . . . . . . . . . . . . . . . 46 3.5.3 Passivity-Based Control Design . . . . . . . . . . . . . . . . . 47 3.6 Comparisons between Proportional-Integral and Passivity-Based Con- trol Current Controller . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4 Real-Time Simulations and Hardware-in-the-Loop 51 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.2 Plant System Description . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.2.1 HILbox OP5600 . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.2.2 ePHASORsim . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.2.3 RT-EVENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2.4 ARTEMIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.3.1 Control Virtual Converter . . . . . . . . . . . . . . . . . . . . 57 4.3.2 Control Real Converter . . . . . . . . . . . . . . . . . . . . . . 59 4.3.3 Interface the STATCOM with the 2-Areas 4-Machines System . 61 5 Conclusion and Future Works 62 5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 References 64

    [1] A. Yazdani and R. Iravani, Voltage-sourced converters in power systems: model-
    ing, control, and applications. John Wiley & Sons, 2010.
    [2] H. Akagi, E. H. Watanabe, and M. Aredes, Instantaneous power theory and appli-
    cations to power conditioning. John Wiley & Sons, 2007.
    [3] R. Ortega, J. A. L. Perez, P. J. Nicklasson, and H. Sira-Ramirez, Passivity-based
    control of Euler-Lagrange systems: mechanical, electrical and electromechanical
    applications. Springer Science & Business Media, 1998.
    [4] F. Shahnia, S. Rajakaruna, and A. Ghosh, Static compensators (STATCOMs) in
    power systems. Springer, 2015.
    [5] K. Padiyar, “Facts controllers in power transmission and distribution,” 2007.
    [6] A. Ghosh and G. Ledwich, Power quality enhancement using custom power de-
    vices. Springer Science & Business Media, 2012.
    [7] H.-C. Tsai, C.-C. Chu, and S.-H. Lee, “Passivity-based nonlinear statcom con-
    troller design for improving transient stability of power systems,” in Transmission
    and Distribution Conference and Exhibition: Asia and Pacific, 2005 IEEE/PES,
    pp. 1–5, IEEE, 2005.
    [8] C.-C. Chu and H.-C. Tsai, “Passivity-based control of upfcs,” in Power Electronics
    and Drive Systems, 2009. PEDS 2009. International Conference on, pp. 794–799,
    IEEE, 2009.
    [9] T.-S. Lee, “Lagrangian modeling and passivity-based control of three-phase ac/dc
    voltage-source converters,” IEEE Transactions on Industrial Electronics, vol. 51,
    no. 4, pp. 892–902, 2004.
    [10] M. Perez, R. Ortega, and J. R. Espinoza, “Passivity-based pi control of switched
    power converters,” IEEE Transactions on Control Systems Technology, vol. 12,
    no. 6, pp. 881–890, 2004.
    [11] L. Harnefors, A. G. Yepes, A. Vidal, and J. Doval-Gandoy, “Passivity-based sta-
    bilization of resonant current controllers with consideration of time delay,” IEEE
    Transactions on Power Electronics, vol. 29, no. 12, pp. 6260–6263, 2014.
    [12] F. M. Serra, C. H. De Angelo, and D. G. Forchetti, “Interconnection and damping
    assignment control of a three-phase front end converter,” International Journal of
    Electrical Power & Energy Systems, vol. 60, pp. 317–324, 2014.
    [13] L. Harnefors, A. G. Yepes, A. Vidal, and J. Doval-Gandoy, “Passivity-based con-
    troller design of grid-connected vscs for prevention of electrical resonance insta-
    bility,” IEEE Transactions on Industrial Electronics, vol. 62, no. 2, pp. 702–710,
    2015.
    [14] M. Hilairet, O. Bethoux, M. Ghanes, V. Tanasa, J.-P. Barbot, and M.-D. Normand-
    Cyrot, “Experimental validation of a sampled-data passivity-based controller for
    coordination of converters in a fuel cell system,” IEEE Transactions on Industrial
    Electronics, vol. 62, no. 8, pp. 5187–5194, 2015.
    [15] A. Kanchanaharuthai, V. Chankong, and K. A. Loparo, “Transient stability and
    voltage regulation in multimachine power systems vis-à-vis statcom and battery
    energy storage,” IEEE Transactions on power systems, vol. 30, no. 5, pp. 2404–
    2416, 2015.
    [16] L. Harnefors, X. Wang, A. G. Yepes, and F. Blaabjerg, “Passivity-based stability
    assessment of grid-connected vscs—an overview,” IEEE Journal of emerging and
    selected topics in Power Electronics, vol. 4, no. 1, pp. 116–125, 2016.
    [17] F. M. Serra, C. H. De Angelo, and D. G. Forchetti, “Application of the modified
    ida-pbc for shunt active power filters control,” International Journal of Circuit
    Theory and Applications, vol. 44, no. 9, pp. 1717–1729, 2016.
    [18] M. Zhang, P. Borja, R. Ortega, Z. Liu, and H. Su, “PID passivity-based control of
    port-hamiltonian systems,” IEEE Transactions on Automatic Control, 2017.
    [19] F. M. Serra and C. H. De Angelo, “Ida-pbc controller design for grid connected
    front end converters under non-ideal grid conditions,” Electric Power Systems Re-
    search, vol. 142, pp. 12–19, 2017.
    [20] R. V. Meshram, M. Bhagwat, S. Khade, S. R. Wagh, A. M. Stanković, and N. M.
    Singh, “Port-controlled phasor hamiltonian modeling and ida-pbc control of solid-
    state transformer,” IEEE Transactions on Control Systems Technology, 2017.
    [21] J. Wang, X. Mu, and Q.-K. Li, “Study of passivity based decoupling control of
    T-NPC pv grid-connected inverter,” IEEE Transactions on Industrial Electronics,
    2017.
    [22] G. Escobar, A. M. Stankovic, and P. Mattavelli, “An adaptive controller in station-
    ary reference frame for d-statcom in unbalanced operation,” IEEE Transactions on
    Industrial Electronics, vol. 51, no. 2, pp. 401–409, 2004.
    [23] B. Blazic and I. Papic, “Improved d-statcom control for operation with unbal-
    anced currents and voltages,” IEEE Transactions on Power Delivery, vol. 21, no. 1,
    pp. 225–233, 2006.
    [24] B. Lu and B.-T. Ooi, “Nonlinear control of voltage-source converter systems,”
    IEEE transactions on power electronics, vol. 22, no. 4, pp. 1186–1195, 2007.
    [25] E. Song, A. F. Lynch, and V. Dinavahi, “Experimental validation of nonlinear
    control for a voltage source converter,” IEEE Transactions on Control Systems
    Technology, vol. 17, no. 5, pp. 1135–1144, 2009.
    [26] K. Wang and M. L. Crow, “Power system voltage regulation via statcom internal
    nonlinear control,” IEEE Transactions on Power systems, vol. 26, no. 3, pp. 1252–
    1262, 2011.
    [27] A. Houari, H. Renaudineau, J.-P. Martin, S. Pierfederici, and F. Meibody-Tabar,
    “Flatness-based control of three-phase inverter with output lc filter,” IEEE Trans-
    actions on Industrial Electronics, vol. 59, no. 7, pp. 2890–2897, 2012.
    [28] Y. Liu, N. Watson, K. Zhou, and B. Yang, “Converter system nonlinear modeling
    and control for transmission applications—part i: Vsc system,” IEEE Transactions
    on Power Delivery, vol. 28, no. 3, pp. 1381–1390, 2013.
    [29] S. Yang, P. Wang, and Y. Tang, “Feedback linearization-based current control
    strategy for modular multilevel converters,” IEEE Transactions on Power Elec-
    tronics, vol. 33, no. 1, pp. 161–174, 2018.
    [30] V. Jalili-Marandi, F. J. Ayres, C. Dufour, and J. Bélanger, “Real-time electromag-
    netic and transient stability simulations for active distribution networks,” in Inter-
    national Conference on Power System Transients (IPST), 2013.
    [31] V. Jalili-Marandi, J. Belanger, and F. J. Ayres, “Model-in-the-loop real-time sim-
    ulation in phasor domain,” in Industrial Electronics (ISIE), 2014 IEEE 23rd Inter-
    national Symposium on, pp. 2280–2284, IEEE, 2014.

    QR CODE