簡易檢索 / 詳目顯示

研究生: 林鈞毅
Lin, Chun Yi
論文名稱: 根據通道統計特性訊息下獵能收發器之合作式波束成型設計
Coordinated Beamforming Design For Energy Harvesting Transceivers With Channel Distribution Information
指導教授: 林澤
Lin, Che
口試委員: 翁詠祿
Ueng, Yeong Luh
高榮駿
Kao, Jung Chun
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 55
中文關鍵詞: 合作式成型突優化獵能
外文關鍵詞: Coordinated Beamforming, convex optimization, energy harvesting
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這研究裡,我們研究多用戶多輸入單輸出(Multi-input single output)干擾通道之合 作式波束成型設計(Cooridnated beamforming design),其中接收端具有分配功率(Power splitting)之獵能(Energy harvesting)功能,並且假設傳送端只知道通道之統計特性(Channel distribution information)。在給定傳送中斷機率(Outage probability)和平均獵能功率下,我 們致力於系統效能最大化,並且共同將波束成型向量與功率分配參數最佳化。此共同優化問 題涉及複雜且非凸特性的限制條件。我們提出一個集中式連續凸化近似(Successive convex approximation)演算法,其主要方法是透過反覆解一連串近似凸化的問題。我們進一步提 出了兩個連續凸化近似演算法的分散式實現:串行式實現(DSCA-Serial)和平行式實現 (DSCA-Parallel)。對典型的獵能波束成型設計,獵能能量與系統效能的去捨通常是可預期 的。非常意外的,我們模擬結果顯示只需犧牲1%的系統效能就可在接收端汲取10%的傳送能 量。與窮舉法(exhaustive search method)相比,我們提出的三個演算法皆能達到接近最佳的 表現。與另外兩個演算法相比,我們也觀察到分散式連續凸化近似演算法之乘子交替方向法 節省了大量的運算時間,也顯現了分散式連續凸化近似演算法的平行式實現的巨大潛力。


    In this work, we consider coordinated beamforming design in a multi-user multiple input single output (MISO) interference channel where receivers are capable of energy harvesting (EH) in a power splitting manner, assuming only channel distribution information (CDI) is known to transmitter. Under a given requirement on the rate outage probability and the average EH power for receivers, we aim to maximize the system utility where the beamforming vectors and the power splitting factor are jointly optimized. This joint optimization problem involves complicated and non-convex constraints. We propose a centralized successive convex approximation (SCA) algorithm via solving a series of approximate convex problems iteratively. We further propose two decentralized implementations of the SCA algorithm: one serial implementation (DSCA-Serial) and the other parallel implementation (DSCA-Parallel). For a typical EH beamforming design, a tradeoff between the harvested energy and the system utility is often expected. Surprisingly, our simulations show that only less than 1% of the system utility is sacrificed while 10% of the transmitted power is harvested at receivers. All three proposed algorithms are shown to achieve near-optimal performance when compared with the exhaustive search method. Significant reduction in computational time is also observed for the proposed DSCA-Parallel when compared with DSCA-Serial, indicating a promising potential for a parallel implementation of decentralized SCA algorithm.

    Contents Acknowledgments i Abstract in Chinese ii Abstract iii Contents iv List of Figures.......................................... vi List of Tables .......................................... ix 1 Introduction 1 2 System Model and Problem Formulation 5 3 Convex Approximation Method 10 3.1 Closed-form expressions for outage and EH constraints . . . . . . . . . . . . . . . . . 10 3.2 ConvexApproximationFormulation ........................... 12 3.3 SuccessiveConvexApproximation............................ 17 3.4 ConvergenceAnalysis .................................. 19 4 Decentralized implementation 24 5 Simulation Results 33 6 Conclusion 44 Appendix 46 Bibliography 55

    [1] R. V. Prasad, V. S. R. Shruti Devasenapathy, and J. Vazifehdan, “Reincarnation in the ambiance: Devices and networks with energy harvesting,” IEEE Commun. Surv. Tut., pp. 195 – 213, 2014.
    [2] Y. He, X. Cheng, W. Peng, and G. L. Stu ̈ber, “A survey of energy harvesting communications: Models and offline optimal policies,” IEEE Commun. Mag., pp. 79 – 85, 2015.
    [3] H. Li, J. Xu, R. Zhang, and S. Cui, “A general utility optimization framework for energy- harvesting-based wireless communications,” IEEE Commun. Mag., pp. 79 – 85, 2015.
    [4] D. Gu ̈ndu ̈z, K. Stamatiou, N. Michelusi, and M. Zorzi, “Designing intelligent energy harvesting communication systems,” IEEE Commun. Mag., pp. 210 – 216, 2014.
    [5] D.I.Kim,D.Niyato,andD.Hwang,“Wireless energy harvesting communications: Beamforming and stochastic optimization,” Information and Communication Technology Convergence, 2014 International Conference on, pp. 760 – 762, October 2014.
    [6] O. Ozel, K. Tutuncuoglu, S. Ulukus, and A. Yener, “Fundamental limits of energy harvesting communications,” IEEE Commun. Mag., vol. 53, pp. 126 – 132, April 2015.
    [7] X.Lu,P.Wang,D.Niyato,D.I.Kim,andZ.Han,“Wireless networks with RF energy harvesting: A contemporary survey,” IEEE Commun. Surv. Tut., pp. 757 – 789, 2015.
    [8] R. Zhang and C. K. Ho, “MIMO broadcasting for simultaneous wireless information and power transfer,” IEEE Trans. Wireless Commun., vol. 12, pp. 1989 – 2001, May 2013.
    [9] G. Zheng, Z. Ho, E. A. Jorswieck, and B. Ottersten, “Information and energy cooperation in cognitive radio networks,” IEEE Trans. Signal Process., vol. 62, pp. 2290 – 2303, May 2014.
    [10] C.Xu, Q.Zhang, Q.Li,Y.Tan, and J.Qin,“Robust transceiver design for wireless information and power transmission in underlay MIMO cognitive radio networks,” IEEE Commun. Lett., vol. 18, no. 9, pp. 1665–1668, September 2014.
    [11] G. Im and J. H. Lee, “Outage probability of underlay cognitive radio networks with SWIPT- enabled relay,” IEEE VTC, pp. 1–5, September 2015.
    [12] H. Kawabata and K. Ishibashi, “RF energy powered feedback-aided cooperation,” PIMRC, 2014 IEEE 25th Annual International Symposium on, pp. 496–473, September 2014.
    [13] S. Yin, Z. Qu, and L. Zhang, “Wireless information and power transfer in cooperative communications with power splitting,” IEEE GLOBECOM, pp. 1–6, December 2015.
    [14] A. A. Nasir, X. Zhou, S. Durrani, and R. A. Kennedy, “Relaying protocols for wireless energy harvesting and information processing,” IEEE Trans. Wireless Commun., vol. 12, no. 7, pp. 3622– 3636, July 2013.
    [15] A. A. Nasir, X. Zhou, S. Durrani, and R. A. Kennedy, “Throughput and ergodic capacity of wireless energy harvesting based DF relaying network,” IEEE ICC, pp. 4066–4071, June 2014.
    [16] Y. Zeng and R. Zhang, “Full-duplex wireless-powered relay with self-energy recycling,” IEEE Wireless Commun. Lett., vol. 4, no. 2, pp. 201–204, April 2015.
    [17] M. Kashef and A. Ephremides, “Optimal partial relaying for energy-harvesting wireless net- works,” IEEE/ACM Trans. Netw., vol. 24, no. 1, pp. 113–122, February 2016.
    [18] L. Liu, R. Zhang, and K.-C. Chua, “Wireless information transfer with opportunistic energy harvesting,” IEEE Trans. Wireless Commun., pp. 288–300, January 2013.
    [19] L. Liu, R. Zhang, and K.-C. Chua, “Wireless information and power transfer: A dynamic power splitting approach,” IEEE Trans. Commun., vol. 61, no. 9, pp. 3990–4001, September 2013.
    [20] D. W. K. Ng, E. S. Lo, and R. Schober, “Wireless information and power transfer: Energy efficiency optimization in OFDMA systems,” IEEE Trans. Wireless Commun., pp. 6352–6370, December 2013.
    [21] C. Shen, W.-C. Li, and T.-H. Chang, “Wireless information and energy transfer in multi-antenna interference channel,” IEEE Trans. Signal Process., pp. 6249–6264, December 2014.
    [22] Q. Shi, W. Xu, T.-H. Chang, Y. Wang, and E. Song, “Joint beamforming and power splitting for MISO interference channel with SWIPT: An SOCP relaxation and decentralized algorithm,” IEEE Trans. Signal Process., pp. 6194–6208, December 2014.
    [23] H. Ju and R. Zhang, “A novel mode switching scheme utilizing random beamforming for opportunistic energy harvesting,” IEEE Trans. Wireless Commun., pp. 2150–2162, 2014.
    [24] S. Timotheou, I. Krikidis, and B. Ottersten, “MISO interference channel with QoS and RF energy harvesting constraints,” IEEE ICC’13, pp. 4191 – 4196, June 2013.
    [25] S. Timotheou, I. Krikidis, G. Zheng, and B. Ottersten, “Beamforming for MISO interference channels with QoS and RF energy transfer,” IEEE Trans. Wireless Commun., vol. 13, pp. 2646 – 2658, May 2014.
    [26] Y. Zeng and R. Zhang, “Optimized training design for wireless energy transfer,” IEEE Trans. Commun., vol. 63, pp. 536 – 550, February 2015.
    [27] C. B. Peel, B. M. Hochwald, and A. L. Swindlehurst, “A vector-perturbation technique for near- capacity multiantenna multiuser communication—part i: Channel inversion and regularization,” IEEE Trans. Commun., vol. 53, no. 1, pp. 195–202, January 2005.
    [28] W.-C. Li, T.-H. Chang, C. Lin, and C.-Y. Chi, “Coordinated beamforming for multiuser MISO interference channel under rate outage constraints,” IEEE Trans. Signal Process., vol. 61, pp. 1087 – 1103, March 2013.
    [29] J. Proakis, Digital Communication. McGraw-Hill Science Press, 2000.
    [30] J. Mo and J. Walrand, “Fair end-to-end window-based congestion control,” IEEE/ACM Trans.
    Netw., vol. 8, pp. 556 – 567, October 2000.
    [31] S. Kandukuri and S. Boyd, “Optimal power control in interference-limited fading wireless channels with outage-probability specifications,” IEEE Trans. Wireless Commun.,, vol. 1, pp. 46 – 55, January 2002.
    [32] Z.-Q. Luo, W.-K. Ma, A. M.-C. So, Y. Ye, and S. Zhang, “Semidefinite relaxation of quadratic optimization problems,” IEEE Signal Process. Mag., vol. 27, pp. 20 – 34, May 2010.
    [33] Y. Huang and D. P. Palomar, “Rank-constrained separable semidefinite programming with applications to optimal beamforming,” IEEE Trans. Signal Process., vol. 58, no. 2, pp. 664–678, February 2010.
    [34] B. R. Marks and G. P. Wright, “A general inner approximation algorithm for nonconvex mathematical programs,” Operat. Res., vol. 26, pp. 681–683, Feb 2010.
    [35] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends in Mach. Learn., vol. 3, no. 1, pp. 1–122, 2010.
    [36] G. B. Dantzig and P. Wolfe, “Decomposition principle for linear programs,” Operat. Res., vol. 8, no. 101-111, 1960.
    [37] J. F. Benders, “Partitioning procedures for solving mixed-variables programming problems,” Numerische Mathematik, vol. 4, no. 238-252, 1962.
    [38] J. Lindblom, E. Karipidis, and E. G. Larsson, “Outage rate regions for the MISO IFC,” Proc. Asilomar Conf. Signals, Syst. Comput., pp. 1120–1124, 2009.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE