簡易檢索 / 詳目顯示

研究生: 吳竹喬
Chu-Chiao Wu
論文名稱: 探討ATM之基因放射療法在惡性腦癌之應用性
ATM Radio-Gene Therapy for Brain Tumor
指導教授: 江啟勳
Chi-Shiun Chiang
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 103
中文關鍵詞: ATM基因三螺旋DNARNA干擾技術潛在致死性傷害半致死性傷害惡性腦瘤
外文關鍵詞: Ataxia telangiectasia-muted, triplex forming oligonucleotide, RNA interference, potential lethal damage, sublethal damage, glioma, shRNA
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • ATM (Ataxia telangiectasia-muted)蛋白質在DNA damage repair、cell cycle arrest及細胞死亡的決定中扮演重要角色。它可藉由調控下游眾多基因而去完成不同的任務。然而,此蛋白在惡性腦瘤之低輻射敏感性所扮演之機制及角色目前仍不清楚。在基因治療之研究中,TFO (triplex forming oligonucleotide)及RNAi (RNA interference)兩個系統分別被認為具有在DNA層次及mRNA層次對特定目標基因作抑制之功能。然而,有關此兩系統的抑制效率到目前為止還沒有被比較過。因此,比較此兩種系統對於特定基因ATM之抑制,以及ATM基因在惡性腦瘤之低輻射敏感性中扮演的角色是非常值得研究的。為了研究TFO的功能,三組針對ATM基因特定序列之TFO分別被設計,並進行測試。首先,研究TFO之三股結合效率及溶點。結果顯示三組TFO皆具有與ATM目標基因之特定DNA雙股序列結合之能力,三股產物的溶點大於40℃。暗示了所設計之TFO系統在生物體中與特定目標基因形成穩定結合之可能性。接下來,在細胞實驗中觀測其傳送入細胞之傳輸效率及時程性抑制效率。在傳輸效率的實驗中顯示,TFO混合物加入細胞後12小時約90%以上的細胞質或核內都能觀測到TFO存在;特定基因之抑制效率實驗中,可發現送入TFO後24小時內對特定基因mRNA、 52小時內對特定基因蛋白質皆有顯著抑制效果。此外,三組TFO由於其組成不同,在時程性抑制效果中個別有不同的表現。相關研究中,這是首次使用TFO的系統來抑制ATM基因表現的實驗。在RNAi系統之建構方面,四組含有針對ATM基因特定序列shRNA之病毒載體分別被建構、純化及抑制效果測試。結果顯示四組shRNA序列片段在送入細胞12小時內對特定基因皆有顯著之抑制效果。挑選抑制效果最明顯之兩組RNAi及control序列,建構對應之長久穩定抑制型細胞株並分析特定基因表現量。結果顯示分別觀察不同代數之兩株細胞株特定基因之mRNA及蛋白質層次皆顯著及穩定地被抑制,相對的正常細胞及control RNAi細胞株則無被抑制現象。另外也觀察到,ATM穩定抑制型細胞株之生長速率與正常及control細胞相比明顯遲緩,細胞群落形態明顯不同,未受刺激之情況下細胞內之自由基含量明顯較高。最後,在這個研究裡探討了ATM之抑制對於照射輻射後之惡性腦瘤細胞U87MG存活之影響。存活率實驗結果顯示ATM之抑制能增加腦癌細胞U87MG之輻射敏感性,但對於人類子宮頸癌細胞Hela則較無顯著效果。另外,SLDR及PLDR之實驗結果顯示,ATM之抑制會影響此人類腦癌細胞SLDR及PLDR能力。以上存活率及SLD、PLD修復能力的實驗結果在相關研究當中是最新的發現。從以上的結果可以猜測ATM可能藉由SLDR及PLDR影響人類腦癌細胞U87MG之輻射敏感性,並可能與自由基之清除有關。然而,ATM基因在人類腦癌細胞之抗輻射特性中扮演之真實生物功能需要更近一步的實驗去證實。


    ATM (Ataxia telangiectasia-muted) gene plays an important role in the control of cell cycle, signal transduction, DNA repair and cell death after cell damage by irradiation. The involving functions and the range are magnified by the downstreams of ATM gene. However, the mechanism and role of ATM in the radioresistance of brain cancer remained largely unclear. In studies of gene therapy, TFO (triplex forming oligonucleotide) system and RNAi (RNA interference) system are believed to have functions of gene inhibition in DNA and RNA level, respectively. However, there were no published data to compare their inhibition effects. This study aimed to compare the ATM inhibition by these two systems and investigate the role of ATM played in the response of glioma to radiation therapy. To study the function of TFO, three TFOs that target different sequences of ATM gene were designed and assayed. The results showed that three TFOs could bind to their duplex targets. The melting point of the triplex is greater than 37℃ which indicates the possibility of triplex formation within cells under normal physiological condition. Resuls also showed that TFO could be efficiently delivered into cells. Delivery efficiency assay indicated that TFO were found in almost 90% cells 12 hr after TFO delivery. Gene inhibition time course analysis found that the maximum inhibition effects on mRNA and protein levels occurred at 24 hr and 48- 52 hr after TFO transfection, respectively. Besides, three TFOs had different time-course of inhibitions because of their different composition. Among relevant research, this is the first experiment using TFO system to inhibit ATM gene expression. Regarding the construction of RNAi system, four virus vectors containing shRNAs for ATM inhibition were constructed, purified, and assayed. All of four shRNA expression cassettes had significant inhibition effects on mRNA levels at 12 hr after transfection. Corresponding stable-inhibition cell lines were constructed and specifically inhibited ATM expression was determined. We have also found that ATM stable-inhibition cell line had a retarded growth and different colony morphology. Moreover, the ROS increased in cells with inhibited ATM. Finally, the survival of U87MG glioma with suppressed ATM after irradiation was determined. The lack of ATM expression led to increase radiosensitivity in glioma U87MG but not in cervical carcinoma Hela. Besides, ATM inhibition influenced SLDR and PLDR ability of U87MG. The above results suggested that ATM inhibition may enhance radiation killing on glioma cells (U87MG) by affecting its SLDR and PLDR ability, and be associated with antioxidant function. However, further in vivo experiments were required to better define the role of ATM in human brain cancer to radiation therapy.

    誌謝 ... I 摘要 ... II Abstract ... IV Contents ... VI Introduction ... 1 I. Glioblastoma Multiforme (GBM) ... 1 II. Ataxia telangiectasia- muted (ATM) ... 1 III. Triple helix forming oligonucleotide (TFO) ... 5 IV. RNA interference (RNAi) and Retroviral RNAi system ... 7 V. Repair of sublethal damage ... 9 VI. Repair of Potentially lethal damage ... 11 VII. Motive ... 13 Material and Method ... 15 I. Cells and Animals ... 15 a. Cell line maintenance ... 15 b. Animal ... 16 II. TFO system construction ... 16 a. Oligonucleotide design and Synthesis ... 16 b. Triplex formation by electrophoretic mobility shift assay with synthetic duplexes ... 17 c. Thermal Stability ... 17 c-1. Polymerase Chain Reaction (PCR) ... 17 c-2. Recovery of DNA from agarose gel (gel extraction) ... 18 c-3. Melting temperature (Tm) analysis ... 18 d. Transient Transfection Analysis by FAM-labeled TFO ... 19 III. Construction of long-term gene silencing cell line by retroviral RNAi system ... 20 a. RNAi and oligonucleotide design ... 20 b. Retroviral clone construction ... 21 b-1. Annealing ... 21 b-2. Ligation ... 21 b-3. Transformation ... 21 b-4. Plasmid DNA purification ... 22 b-5. Colony screening by PCR & restriction enzyme ... 22 b-5-1. Restriction Enzyme Digestion ... 22 b-6. SEC (shRNA expression cassette) transfection ... 23 b-7. Plasmid transfection ... 23 b-8. Viral titer of packaging of recombinant retrovirus ... 24 b-9. Retroviral infection ... 25 b-10. Cytotoxicity analysis by MTT assay ... 26 IV. Experiments of inhibiting efficiency of specific genes ... 26 a. mRNA expression of specific genes ... 26 a-1. Total RNA Preparation ... 26 a-2. Reverse transcription-PCR ... 26 b. Protein expression of specific genes ... 28 b-1.1. Protein isolation ... 28 b-1.2. Western blot analysis ... 28 b-2. Immuno-stain measured by FACS ... 29 V. Studies of long-term gene silencing cell line ... 29 a. Growth Curve ... 29 b. Detection of Reaction oxygen species (ROS) formation ... 30 VI. Studies upon irradiation treatments ... 30 a. Radiation treatment ... 30 b. Clonogenic survival assay ... 30 c. Repair of sublethal damage ... 31 d. Repair of potential lethal damage in cellular level ... 32 e. DNA content analysis ... 32 VII. Animal studies ... 33 a. Animal treatment ... 33 b. Population and position of quiescent cells ... 33 b-1. Labeling with 5-bromo-2’-deoxyuridine (BrdU) ... 33 b-2. Anti-BrdU staining ... 33 c. Repair of potential lethal damage in vivo ... 34 VIII. Lung colony assay ... 34 IX. Statistical analyses ... 35 Result ... 36 I. TFO binding studies ... 36 a. Triplex formation by electrophoretic mobility shift assay (EMSA) ... 36 b. Thermal stability ... 36 II. TFO studies in cellular level ... 37 a. Delivery efficiency ... 37 b. Time course of mRNA inhibition efficiency ... 38 c. Time course of protein inhibition efficiency ... 39 c-1. Large T antigen ... 39 c-2. ATM protein ... 39 III. Construction of stable-inhibition cell-line ... 40 a. Construction of retroviral vector clones ... 40 b. Inhibition time course of SECs (shRNA expression cassette) ... 41 c. Retroviral vector transfection into packaging cell ... 42 d. Viral titer of packaging of recombinant retrovirus ... 43 e. Retroviral infection ... 43 e-1. RNAi inhibition efficiency on transcription level ... 44 e-2. RNAi inhibition efficiency on protein level ... 44 IV. Studies of stable-inhibition cell lines ... 45 a. Colony morphology ... 45 b. Growth curve ... 45 c. Detection of ROS formation ... 45 V. Studies upon irradiation treatments ... 46 a. Survival curve ... 46 b. Repair of sublethal damage ... 48 c. Repair of potential lethal damage ... 50 d. Cell cycle distribution ... 51 VI. Animal studies ... 52 a. Repair of potential lethal damage in vivo ... 52 b. Study of non-proliferation cells (Q cells) ... 54 Discussion ... 55 Appendixes ... 64 Tables ... 71 Figures ... 74 Reference ... 98

    1. Kleihues, P., Burger, P. C. & Scheithauer, B. W. (1993) The new WHO classification of brain tumours, Brain Pathol. 3, 255-68.
    2. Miller, P. J., Hassanein, R. S., Giri, P. G., Kimler, B. F., O'Boynick, P. & Evans, R. G. (1990) Univariate and multivariate statistical analysis of high-grade gliomas: the relationship of radiation dose and other prognostic factors, Int J Radiat Oncol Biol Phys. 19, 275-80.
    3. Sharma, R. R., Singh, D. P., Pathak, A., Khandelwal, N., Sehgal, C. M., Kapoor, R., Ghoshal, S., Patel, F. D. & Sharma, S. C. (2003) Local control of high-grade gliomas with limited volume irradiation versus whole brain irradiation, Neurol India. 51, 512-7.
    4. Burton, E. C. & Prados, M. D. (2000) Malignant gliomas, Curr Treat Options Oncol. 1, 459-68.
    5. Herfarth, K. K., Gutwein, S. & Debus, J. (2001) Postoperative radiotherapy of astrocytomas, Semin Surg Oncol. 20, 13-23.
    6. Salcman, M. (1980) Survival in glioblastoma: historical perspective, Neurosurgery. 7, 435-9.
    7. Malaise, E. P., Fertil, B., Chavaudra, N. & Guichard, M. (1986) Distribution of radiation sensitivities for human tumor cells of specific histological types: comparison of in vitro to in vivo data, Int J Radiat Oncol Biol Phys. 12, 617-24.
    8. Savitsky, K., Sfez, S., Tagle, D. A., Ziv, Y., Sartiel, A., Collins, F. S., Shiloh, Y. & Rotman, G. (1995) The complete sequence of the coding region of the ATM gene reveals similarity to cell cycle regulators in different species, Hum Mol Genet. 4, 2025-32.
    9. Jung, M., Kondratyev, A., Lee, S. A., Dimtchev, A. & Dritschilo, A. (1997) ATM gene product phosphorylates I kappa B-alpha, Cancer Res. 57, 24-7.
    10. Lavin, M. F. & Shiloh, Y. (1997) The genetic defect in ataxia-telangiectasia, Annu Rev Immunol. 15, 177-202.
    11. Nakamura, Y. (1998) ATM: the p53 booster, Nat Med. 4, 1231-2.
    12. Kastan, M. B. & Lim, D. S. (2000) The many substrates and functions of ATM, Nat Rev Mol Cell Biol. 1, 179-86.
    13. Shiloh, Y. (1997) Ataxia-telangiectasia and the Nijmegen breakage syndrome: related disorders but genes apart, Annu Rev Genet. 31, 635-62.
    14. Easton, D. F. (1994) Cancer risks in A-T heterozygotes, Int J Radiat Biol. 66, S177-82.
    15. Savitsky, K., Bar-Shira, A., Gilad, S., Rotman, G., Ziv, Y., Vanagaite, L., Tagle, D. A., Smith, S., Uziel, T., Sfez, S. & et al. (1995) A single ataxia telangiectasia gene with a product similar to PI-3 kinase, Science. 268, 1749-53.
    16. Savitsky, K., Platzer, M., Uziel, T., Gilad, S., Sartiel, A., Rosenthal, A., Elroy-Stein, O., Shiloh, Y. & Rotman, G. (1997) Ataxia-telangiectasia: structural diversity of untranslated sequences suggests complex post-transcriptional regulation of ATM gene expression, Nucleic Acids Res. 25, 1678-84.
    17. Vivanco, I. & Sawyers, C. L. (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer, Nat Rev Cancer. 2, 489-501.
    18. Khanna, K. K., Keating, K. E., Kozlov, S., Scott, S., Gatei, M., Hobson, K., Taya, Y., Gabrielli, B., Chan, D., Lees-Miller, S. P. & Lavin, M. F. (1998) ATM associates with and phosphorylates p53: mapping the region of interaction, Nat Genet. 20, 398-400.
    19. Banin, S., Moyal, L., Shieh, S., Taya, Y., Anderson, C. W., Chessa, L., Smorodinsky, N. I., Prives, C., Reiss, Y., Shiloh, Y. & Ziv, Y. (1998) Enhanced phosphorylation of p53 by ATM in response to DNA damage, Science. 281, 1674-7.
    20. Canman, C. E., Lim, D. S., Cimprich, K. A., Taya, Y., Tamai, K., Sakaguchi, K., Appella, E., Kastan, M. B. & Siliciano, J. D. (1998) Activation of the ATM kinase by ionizing radiation and phosphorylation of p53, Science. 281, 1677-9.
    21. Khosravi, R., Maya, R., Gottlieb, T., Oren, M., Shiloh, Y. & Shkedy, D. (1999) Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage, Proc Natl Acad Sci U S A. 96, 14973-7.
    22. Maya, R., Balass, M., Kim, S. T., Shkedy, D., Leal, J. F., Shifman, O., Moas, M., Buschmann, T., Ronai, Z., Shiloh, Y., Kastan, M. B., Katzir, E. & Oren, M. (2001) ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage, Genes Dev. 15, 1067-77.
    23. Chehab, N. H., Malikzay, A., Appel, M. & Halazonetis, T. D. (2000) Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53, Genes Dev. 14, 278-88.
    24. Matsuoka, S., Huang, M. & Elledge, S. J. (1998) Linkage of ATM to cell cycle regulation by the Chk2 protein kinase, Science. 282, 1893-7.
    25. Lim, D. S., Kim, S. T., Xu, B., Maser, R. S., Lin, J., Petrini, J. H. & Kastan, M. B. (2000) ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway, Nature. 404, 613-7.
    26. Gatei, M., Young, D., Cerosaletti, K. M., Desai-Mehta, A., Spring, K., Kozlov, S., Lavin, M. F., Gatti, R. A., Concannon, P. & Khanna, K. (2000) ATM-dependent phosphorylation of nibrin in response to radiation exposure, Nat Genet. 25, 115-9.
    27. Zhao, S., Weng, Y. C., Yuan, S. S., Lin, Y. T., Hsu, H. C., Lin, S. C., Gerbino, E., Song, M. H., Zdzienicka, M. Z., Gatti, R. A., Shay, J. W., Ziv, Y., Shiloh, Y. & Lee, E. Y. (2000) Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products, Nature. 405, 473-7.
    28. Wu, X., Ranganathan, V., Weisman, D. S., Heine, W. F., Ciccone, D. N., O'Neill, T. B., Crick, K. E., Pierce, K. A., Lane, W. S., Rathbun, G., Livingston, D. M. & Weaver, D. T. (2000) ATM phosphorylation of Nijmegen breakage syndrome protein is required in a DNA damage response, Nature. 405, 477-82.
    29. Peng, C. Y., Graves, P. R., Thoma, R. S., Wu, Z., Shaw, A. S. & Piwnica-Worms, H. (1997) Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216, Science. 277, 1501-5.
    30. Polyak, K., Xia, Y., Zweier, J. L., Kinzler, K. W. & Vogelstein, B. (1997) A model for p53-induced apoptosis, Nature. 389, 300-5.
    31. Afshar, G., Jelluma, N., Yang, X., Basila, D., Arvold, N. D., Karlsson, A., Yount, G. L., Dansen, T. B., Koller, E. & Haas-Kogan, D. A. (2006) Radiation-induced caspase-8 mediates p53-independent apoptosis in glioma cells, Cancer Res. 66, 4223-32.
    32. Karran, P. (2000) DNA double strand break repair in mammalian cells, Curr Opin Genet Dev. 10, 144-50.
    33. Li, S., Ting, N. S., Zheng, L., Chen, P. L., Ziv, Y., Shiloh, Y., Lee, E. Y. & Lee, W. H. (2000) Functional link of BRCA1 and ataxia telangiectasia gene product in DNA damage response, Nature. 406, 210-5.
    34. Jeggo, P. A. (1998) Identification of genes involved in repair of DNA double-strand breaks in mammalian cells, Radiat Res. 150, S80-91.
    35. Bartkova, J., Horejsi, Z., Koed, K., Kramer, A., Tort, F., Zieger, K., Guldberg, P., Sehested, M., Nesland, J. M., Lukas, C., Orntoft, T., Lukas, J. & Bartek, J. (2005) DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis, Nature. 434, 864-70.
    36. Turker, M. S., Gage, B. M., Rose, J. A., Elroy, D., Ponomareva, O. N., Stambrook, P. J. & Tischfield, J. A. (1999) A novel signature mutation for oxidative damage resembles a mutational pattern found commonly in human cancers, Cancer Res. 59, 1837-9.
    37. Mizutani, T., Hayashi, M., Maeda, A., Sasaki, N., Yamashita, T., Kasai, N. & Namioka, S. (1993) Inhibition of mouse hepatitis virus multiplication by antisense oligonucleotide, antisense RNA, sense RNA and ribozyme, Adv Exp Med Biol. 342, 129-35.
    38. Chan, P. P. & Glazer, P. M. (1997) Triplex DNA: fundamentals, advances, and potential applications for gene therapy, J Mol Med. 75, 267-82.
    39. Giovannangeli, C. & Helene, C. (1997) Progress in developments of triplex-based strategies, Antisense Nucleic Acid Drug Dev. 7, 413-21.
    40. Kovacs, A., Kandala, J. C., Weber, K. T. & Guntaka, R. V. (1996) Triple helix-forming oligonucleotide corresponding to the polypyrimidine sequence in the rat alpha 1(I) collagen promoter specifically inhibits factor binding and transcription, J Biol Chem. 271, 1805-12.
    41. Panyutin, I. G. & Neumann, R. D. (1994) Sequence-specific DNA double-strand breaks induced by triplex forming 125I labeled oligonucleotides, Nucleic Acids Res. 22, 4979-82.
    42. Nikjoo, H., Panyutin, I. G., Terrissol, M., Vrigneaud, J. M. & Laughton, C. A. (2000) Distribution of strand breaks produced by Auger electrons in decay of 125I in triplex DNA, Acta Oncol. 39, 707-12.
    43. Sedelnikova, O. A., Luu, A. N., Karamychev, V. N., Panyutin, I. G. & Neumann, R. D. (2001) Development of DNA-based radiopharmaceuticals carrying Auger-electron emitters for antigene radiotherapy, Int J Radiat Oncol Biol Phys. 49, 391-6.
    44. Panyutin, I. G., Sedelnikova, O. A., Karamychev, V. N. & Neumann, R. D. (2003) Antigene radiotherapy: targeted radiodamage with 125i-labeled triplex-forming oligonucleotides, Ann N Y Acad Sci. 1002, 134-40.
    45. Sledz, C. A., Holko, M., de Veer, M. J., Silverman, R. H. & Williams, B. R. (2003) Activation of the interferon system by short-interfering RNAs, Nat Cell Biol. 5, 834-9.
    46. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E. & Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans, Nature. 391, 806-11.
    47. Schwarz, D. S., Hutvagner, G., Du, T., Xu, Z., Aronin, N. & Zamore, P. D. (2003) Asymmetry in the assembly of the RNAi enzyme complex, Cell. 115, 199-208.
    48. Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R. & Hannon, G. J. (2001) Argonaute2, a link between genetic and biochemical analyses of RNAi, Science. 293, 1146-50.
    49. Sijen, T., Fleenor, J., Simmer, F., Thijssen, K. L., Parrish, S., Timmons, L., Plasterk, R. H. & Fire, A. (2001) On the role of RNA amplification in dsRNA-triggered gene silencing, Cell. 107, 465-76.
    50. Lipardi, C., Wei, Q. & Paterson, B. M. (2001) RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs, Cell. 107, 297-307.
    51. Reynolds, A., Leake, D., Boese, Q., Scaringe, S., Marshall, W. S. & Khvorova, A. (2004) Rational siRNA design for RNA interference, Nat Biotechnol. 22, 326-30.
    52. Xia, X. G., Zhou, H., Ding, H., Affar el, B., Shi, Y. & Xu, Z. (2003) An enhanced U6 promoter for synthesis of short hairpin RNA, Nucleic Acids Res. 31, e100.
    53. Boden, D., Pusch, O., Lee, F., Tucker, L., Shank, P. R. & Ramratnam, B. (2003) Promoter choice affects the potency of HIV-1 specific RNA interference, Nucleic Acids Res. 31, 5033-8.
    54. Tang, F. C., Yang, H. B., Meng, G. L., Li, C. J., Shang, K. G., Zhang, B. & Xue, Y. F. (2003) [RNA interference directed by small hairpin RNA expressed in COS-7 cells], Yi Chuan Xue Bao. 30, 295-300.
    55. Soutschek, J., Akinc, A., Bramlage, B., Charisse, K., Constien, R., Donoghue, M., Elbashir, S., Geick, A., Hadwiger, P., Harborth, J., John, M., Kesavan, V., Lavine, G., Pandey, R. K., Racie, T., Rajeev, K. G., Rohl, I., Toudjarska, I., Wang, G., Wuschko, S., Bumcrot, D., Koteliansky, V., Limmer, S., Manoharan, M. & Vornlocher, H. P. (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs, Nature. 432, 173-8.
    56. Zimmermann, T. S., Lee, A. C., Akinc, A., Bramlage, B., Bumcrot, D., Fedoruk, M. N., Harborth, J., Heyes, J. A., Jeffs, L. B., John, M., Judge, A. D., Lam, K., McClintock, K., Nechev, L. V., Palmer, L. R., Racie, T., Rohl, I., Seiffert, S., Shanmugam, S., Sood, V., Soutschek, J., Toudjarska, I., Wheat, A. J., Yaworski, E., Zedalis, W., Koteliansky, V., Manoharan, M., Vornlocher, H. P. & MacLachlan, I. (2006) RNAi-mediated gene silencing in non-human primates, Nature. 441, 111-4.
    57. Shen, C. & Reske, S. N. (2004) Adenovirus-delivered siRNA, Methods Mol Biol. 252, 523-32.
    58. Chen, R. Y. & Li, S. S. (2006) [Retrovirus-mediated RNA inhibition of EphA2 gene expression in colon adenocarcinoma HCT-8 cells], Zhonghua Bing Li Xue Za Zhi. 35, 101-5.
    59. Miyano-Kurosaki, N. & Takaku, H. (2006) Gene silencing of virus replication by RNA interference, Handb Exp Pharmacol, 151-71.
    60. Hu, Z., Cai, F., Cheng, L. J., Xia, K., Xia, J. H. & Zhang, Z. H. (2005) [Stable suppression of beta-catenin expression in prostate cancer cell line by retrovirus mediated RNAi], Zhong Nan Da Xue Xue Bao Yi Xue Ban. 30, 253-7.
    61. Berns, K., Hijmans, E. M., Mullenders, J., Brummelkamp, T. R., Velds, A., Heimerikx, M., Kerkhoven, R. M., Madiredjo, M., Nijkamp, W., Weigelt, B., Agami, R., Ge, W., Cavet, G., Linsley, P. S., Beijersbergen, R. L. & Bernards, R. (2004) A large-scale RNAi screen in human cells identifies new components of the p53 pathway, Nature. 428, 431-7.
    62. Hall, E. J. & Giaccia, A. J. (2006) Radiobiology for the Radiologist 6/e.
    63. Bacchetti, S. & Mauro, F. (1965) Recovery from Sublethal X-Ray Damage in Surviving Yeast Cells, Radiat Res. 25, 103-14.
    64. Weyrather, W. K., Ritter, S., Scholz, M. & Kraft, G. (1999) RBE for carbon track-segment irradiation in cell lines of differing repair capacity, Int J Radiat Biol. 75, 1357-64.
    65. Phillips, R. A. & Tolmach, L. J. (1966) Repair of potentially lethal damage in x-irradiated HeLa cells, Radiat Res. 29, 413-32.
    66. Winans, L. F., Dewey, W. C. & Dettor, C. M. (1972) Repair of sublethal and potentially lethal x-ray damage in synchronous Chinese hamster cells, Radiat Res. 52, 333-51.
    67. Kimura, H., Yasui, T. & Aoyama, T. (1981) Modification of radiation sensitivity of cultured cells by pre- and postirradiation incubation with dibutyryl cyclic AMP, Radiat Res. 85, 207-14.
    68. Iliakis, G. & Nusse, M. (1983) Evidence that repair and expression of potentially lethal damage cause the variations in cell survival after X irradiation observed through the cell cycle in Ehrlich ascites tumor cells, Radiat Res. 95, 87-107.
    69. Utsumi, H. & Elkind, M. M. (1979) Potentially lethal damage versus sublethal damage: independent repair processes in actively growing Chinese hamster cells, Radiat Res. 77, 346-60.
    70. Iliakis, G., Bryant, P. E. & Ngo, F. Q. (1985) Independent forms of potentially lethal damage fixed in plateau-phase Chinese hamster cells by postirradiation treatment in hypertonic salt solution or araA, Radiat Res. 104, 329-45.
    71. Iliakis, G. (1981) Characterization and properties of repair of potentially lethal damage as measured with the help of beta-arabinofuranosyladenine in plateau-phase EAT cells, Radiat Res. 86, 77-90.
    72. Iliakis, G. (1980) Effects of beta-arabinofuranosyladenine on the growth and repair of potentially lethal damage in Ehrilch ascites tumor cells, Radiat Res. 83, 537-52.
    73. Tanabe, K., Hiraoka, W., Kuwabara, M., Matsuda, A., Ueda, T. & Sato, F. (1988) Modification of the repair of potentially lethal damage in plateau-phase Chinese hamster cells by 2-chlorodeoxyadenosine, J Radiat Res (Tokyo). 29, 172-81.
    74. Waldren, C. A. & Rasko, I. (1978) Caffeine enhancement of X-ray killing in cultured human and rodent cells, Radiat Res. 73, 95-110.
    75. Busse, P. M., Bose, S. K., Jones, R. W. & Tolmach, L. J. (1977) The action of caffeine on X-irradiated HeLa cells. II. Synergistic lethality, Radiat Res. 71, 666-77.
    76. Schroy, C. B. & Todd, P. (1979) The effects of caffeine on the expression of potentially lethal and sublethal damage in gamma-irradiated cultured mammalian cells, Radiat Res. 78, 312-6.
    77. Raaphorst, G. P. & Dewey, W. C. (1979) A study of the repair of potentially lethal and sublethal radiation damage in Chinese hamster cells exposed to extremely hypo- or hypertonic NaCl solutions, Radiat Res. 77, 325-40.
    78. Utsumi, H. & Elkind, M. M. (1985) Two forms of potentially lethal damage have similar repair kinetics in plateau- and in log-phase cells, Int J Radiat Biol Relat Stud Phys Chem Med. 47, 569-80.
    79. Kosaka, T., Kaneko, I. & Koide, F. (1990) Correlation between non-repairable DNA lesions and fixation of cell damage by hypertonic solutions in Chinese hamster cells, Int J Radiat Biol. 58, 417-25.
    80. Iliakis, G. (1988) Radiation-induced potentially lethal damage: DNA lesions susceptible to fixation, Int J Radiat Biol Relat Stud Phys Chem Med. 53, 541-84.
    81. Frankenberg-Schwager, M. & Frankenberg, D. (1990) DNA double-strand breaks: their repair and relationship to cell killing in yeast, Int J Radiat Biol. 58, 569-75.
    82. Baumstark-Khan, C. (1992) Effect of aphidicolin on DNA synthesis, PLD-recovery and DNA repair of human diploid fibroblasts, Int J Radiat Biol. 61, 191-7.
    83. Hughes, L. L., Luengas, J., Rich, T. A. & Murray, D. (1992) Radiosensitization of cultured human colon adenocarcinoma cells by 5-fluorouracil: effects on cell survival, DNA repair, and cell recovery, Int J Radiat Oncol Biol Phys. 23, 983-91.
    84. Frankenberg-Schwager, M., Jha, B., Bar, K. & Frankenberg, D. (1995) Molecular mechanism of potentially lethal damage repair. I. Enhanced fidelity of DNA double-strand break rejoining under conditions allowing potentially lethal damage repair, Int J Radiat Biol. 67, 277-85.
    85. Chernikova, S. B., Wells, R. L. & Elkind, M. M. (1999) Wortmannin sensitizes mammalian cells to radiation by inhibiting the DNA-dependent protein kinase-mediated rejoining of double-strand breaks, Radiat Res. 151, 159-66.
    86. Jianlin, L., Jiliang, H., Lifen, J., Wei, Z., Zhijian, C., Shijie, C. & Shijie, X. (2006) Variation of ATM protein expression in response to irradiation of lymphocytes in lung cancer patients and controls, Toxicology.
    87. Nakamura, H., Yasui, Y., Saito, N., Tachibana, A., Komatsu, K. & Ishizaki, K. (2006) DNA repair defect in AT cells and their hypersensitivity to low-dose-rate radiation, Radiat Res. 165, 277-82.
    88. Fan, Z., Chakravarty, P., Alfieri, A., Pandita, T. K., Vikram, B. & Guha, C. (2000) Adenovirus-mediated antisense ATM gene transfer sensitizes prostate cancer cells to radiation, Cancer Gene Ther. 7, 1307-14.
    89. Nakajima, T., Yukawa, O., Tsuji, H., Ohyama, H., Wang, B., Tatsumi, K., Hayata, I. & Hama-Inaba, H. (2006) Regulation of radiation-induced protein kinase Cdelta activation in radiation-induced apoptosis differs between radiosensitive and radioresistant mouse thymic lymphoma cell lines, Mutat Res. 595, 29-36.
    90. Tribius, S., Pidel, A. & Casper, D. (2001) ATM protein expression correlates with radioresistance in primary glioblastoma cells in culture, Int J Radiat Oncol Biol Phys. 50, 511-23.
    91. van Bree, C., Franken, N. A., Rodermond, H. M., Stalpers, L. J. & Haveman, J. (2004) Repair of potentially lethal damage does not depend on functional TP53 in human glioblastoma cells, Radiat Res. 161, 511-6.
    92. Ding, G. R., Honda, N., Nakahara, T., Tian, F., Yoshida, M., Hirose, H. & Miyakoshi, J. (2003) Radiosensitization by inhibition of IkappaB-alpha phosphorylation in human glioma cells, Radiat Res. 160, 232-7.
    93. Gingrich, J. R. & Greenberg, N. M. (1996) A transgenic mouse prostate cancer model, Toxicol Pathol. 24, 502-4.
    94. Xiuzhu, T., Shore, L., Stram, Y., Michaeli, S. C., Brietbart, H. C. & Shemesh, M. (2003) Duplexes of 21 nucleotide RNA specific for COX II mediates RNA interference in cultured bovine aortic coronary endothelial cells (BAECs), Prostaglandins Other Lipid Mediat. 71, 119-29.
    95. Miller, A. D. & Buttimore, C. (1986) Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production, Mol Cell Biol. 6, 2895-902.
    96. Chadwick, K. H. & Leenhouts, H. P. (1973) A molecular theory of cell survival, Phys Med Biol. 18, 78-87.
    97. Sedelnikova, O. A., Panyutin, I. V., Neumann, R. D., Bonner, W. M. & Panyutin, I. G. (2004) Assessment of DNA damage produced by 125I-triplex-forming oligonucleotides in cells, Int J Radiat Biol. 80, 927-31.
    98. Song, J., Intody, Z., Li, M. & Wilson, J. H. (2004) Activation of gene expression by triplex-directed psoralen crosslinks, Gene. 324, 183-90.
    99. Goni, J. R., Vaquerizas, J. M., Dopazo, J. & Orozco, M. (2006) Exploring the reasons for the large density of triplex-forming oligonucleotide target sequences in the human regulatory regions, BMC Genomics. 7, 63.
    100. Basye, J., Trent, J. O., Gao, D. & Ebbinghaus, S. W. (2001) Triplex formation by morpholino oligodeoxyribonucleotides in the HER-2/neu promoter requires the pyrimidine motif, Nucleic Acids Res. 29, 4873-80.
    101. Carbone, G. M., Napoli, S., Valentini, A., Cavalli, F., Watson, D. K. & Catapano, C. V. (2004) Triplex DNA-mediated downregulation of Ets2 expression results in growth inhibition and apoptosis in human prostate cancer cells, Nucleic Acids Res. 32, 4358-67.
    102. Nur, E. K. A., Li, T. K., Zhang, A., Qi, H., Hars, E. S. & Liu, L. F. (2003) Single-stranded DNA induces ataxia telangiectasia mutant (ATM)/p53-dependent DNA damage and apoptotic signals, J Biol Chem. 278, 12475-81.
    103. Zhang, X., Succi, J., Feng, Z., Prithivirajsingh, S., Story, M. D. & Legerski, R. J. (2004) Artemis is a phosphorylation target of ATM and ATR and is involved in the G2/M DNA damage checkpoint response, Mol Cell Biol. 24, 9207-20.
    104. Wang, Y. A., Elson, A. & Leder, P. (1997) Loss of p21 increases sensitivity to ionizing radiation and delays the onset of lymphoma in atm-deficient mice, Proc Natl Acad Sci U S A. 94, 14590-5.
    105. Kishi, S., Wulf, G., Nakamura, M. & Lu, K. P. (2001) Telomeric protein Pin2/TRF1 induces mitotic entry and apoptosis in cells with short telomeres and is down-regulated in human breast tumors, Oncogene. 20, 1497-508.
    106. -hresko, R. C. & Mueckler, M. (2005) mTOR.RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes, J Biol Chem. 280, 40406-16.
    107. Li, B., Wang, X., Rasheed, N., Hu, Y., Boast, S., Ishii, T., Nakayama, K., Nakayama, K. I. & Goff, S. P. (2004) Distinct roles of c-Abl and Atm in oxidative stress response are mediated by protein kinase C delta, Genes Dev. 18, 1824-37.
    108. Sablina, A. A., Budanov, A. V., Ilyinskaya, G. V., Agapova, L. S., Kravchenko, J. E. & Chumakov, P. M. (2005) The antioxidant function of the p53 tumor suppressor, Nat Med. 11, 1306-13.
    109. Schubert, R., Erker, L., Barlow, C., Yakushiji, H., Larson, D., Russo, A., Mitchell, J. B. & Wynshaw-Boris, A. (2004) Cancer chemoprevention by the antioxidant tempol in Atm-deficient mice, Hum Mol Genet. 13, 1793-802.
    110. Chau, B. N. & Wang, J. Y. (2003) Coordinated regulation of life and death by RB, Nat Rev Cancer. 3, 130-8.
    111. Mukhopadhyay, U. K., Senderowicz, A. M. & Ferbeyre, G. (2005) RNA silencing of checkpoint regulators sensitizes p53-defective prostate cancer cells to chemotherapy while sparing normal cells, Cancer Res. 65, 2872-81.
    112. Schmaltz, C., Hardenbergh, P. H., Wells, A. & Fisher, D. E. (1998) Regulation of proliferation-survival decisions during tumor cell hypoxia, Mol Cell Biol. 18, 2845-54.
    113. Kriehuber, R., Riedling, M., Simko, M. & Weiss, D. G. (2004) Cytotoxicity, genotoxicity and intracellular distribution of the Auger electron emitter (65)Zn in two human cell lines, Radiat Environ Biophys. 43, 15-22.
    114. Chekhonin, V. P., Zhirkov Iu, A., Gurina, O. I., Lebedev, S. V., Dmitrieva, T. B., Semenova, A. V., Iaglova, T. V. & Riabinina, A. E. (2005) [Production and characteristics of PEGylated immunoliposome transport vectors specific for neural tissue astrocytes], Biomed Khim. 51, 276-86.
    115. Su, Z., Shi, Y. & Fisher, P. B. (2000) Cooperation between AP1 and PEA3 sites within the progression elevated gene-3 (PEG-3) promoter regulate basal and differential expression of PEG-3 during progression of the oncogenic phenotype in transformed rat embryo cells, Oncogene. 19, 3411-21.
    116. Bani, M. R., Garofalo, A., Scanziani, E. & Giavazzi, R. (1991) Effect of interleukin-1-beta on metastasis formation in different tumor systems, J Natl Cancer Inst. 83, 119-23.
    117. Vidal-Vanaclocha, F., Alvarez, A., Asumendi, A., Urcelay, B., Tonino, P. & Dinarello, C. A. (1996) Interleukin 1 (IL-1)-dependent melanoma hepatic metastasis in vivo; increased endothelial adherence by IL-1-induced mannose receptors and growth factor production in vitro, J Natl Cancer Inst. 88, 198-205.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE