研究生: |
魏琇玫 Wei, Hsiu-Mei |
---|---|
論文名稱: |
以高通量磁鉗系統研究皮牛頓機械力對細胞機械轉導之影響 Using High-throughput Magnetic tweezer to study the cell mechanotransduction under Piconewton Forces Stimuli |
指導教授: |
陳之碩
Chen, Chi-Shuo |
口試委員: |
邱于芯
林育君 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 77 |
中文關鍵詞: | 細胞機械轉導 、鈣信號 、磁鉗 、皮克牛頓力 、高通量 、壓電受體 |
外文關鍵詞: | cell mechanotransduction, calcium signaling, magnetic tweezers, piconewton forces, high throughput, Piezo receptors |
相關次數: | 點閱:68 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
膠質母細胞瘤是成人中最常見的原發性中樞神經系統 (CNS) 惡性腫瘤,由於其高侵襲度和低存活率,因此平均壽命大約落在15個月。然而,膠質母細胞瘤遷移過程中將會受到持續拉伸的機械刺激以及重複拉伸的機械刺激,由於目前尚未釐清細胞受到機械刺激後對細胞的機械轉導的影響,因此需要進一步的研究來探索其病理生理機制和治療方法。其中,細胞機械轉導涉及到細胞對外界的機械刺激的感知、傳導和轉化,並對腫瘤細胞的增殖、侵襲和轉移具有重要的影響。因此,研究持續拉伸及重複拉伸的皮牛頓力刺激對膠質母細胞瘤細胞的機械轉導影響,將有助於深入了解其病理生理機制,為後續治療提供理論支持。
在本研究中,使用膠質母瘤細胞(U87)作為細胞模型,證明了當細胞受到11.5 piconewton (pN)的持續拉伸及重複拉伸刺激後,細胞內的活性氧增加。細胞受力後,使細胞膜上的Piezo1打開,細胞外的鈣離子進入細胞內,並且藉由重複拉伸的機械刺激可以使細胞內的鈣離子累積。鈣離子進入細胞內後,使粒線體內的活性氧增加。細胞骨架中的肌動蛋白(F-actin)不論受到持續拉伸或者是重複拉伸刺激後會使細胞內的F-actin增生及重塑,增加細胞的抗拉強度;然而,當細胞膜受到持續拉伸刺激6秒或者是重複拉伸刺激總時長為6秒刺激後,會使磁珠下方區域的F-actin具有方向性,有助於細胞運動方向的定位。而在重複刺激總時長為30秒後,F-actin卻不具方向性,推測F-actin受到破壞,進而影響後續細胞遷移的能力。進一步抑制細胞骨架中的肌球蛋白II (Myosin II)觀察細胞骨架與機械刺激的關係,可以發現持續拉伸刺激時,抑制Myosin II並不會影響鈣離子進入細胞內,卻會使重複拉伸刺激後鈣離子累積增加。最後,當Piezo1受到抑制後會使細胞內鈣離子變化減少,卻在重複拉伸的機械刺激後得到鈣離子累積的結果呈現,驗證細胞內部分鈣離子變化來源於Piezo1。
總而言之,我們針對膠質母細胞瘤細胞的機械轉導進行了深入的探索,發現不同拉伸方法的機械刺激對細胞具有不同的影響。此外,研究也證明了機械刺激會使細胞外的離子進入細胞內,進而導致細胞內的活性氧產生,其中部分鈣離子可藉由Piezo1通道進入細胞內部,促使粒線體的活性氧增加,並且對細胞骨架及肌動蛋白的增生、重塑以及收縮力等方面產生了重要的影響。未來的研究可以進一步探討機械刺激與膠質母細胞瘤的生長、轉移等方面的關聯性,並且提供更有效的治療方法。
Glioma is the most common primary central nervous system (CNS) malignancy in adults. Despite the gradual improvement of medical standards, the average life expec-tancy is about 15 months, so prolonging the survival time is the primary goal. When cells are stimulated by external force, mechanosensitive receptors will convert the me-chanical force into chemical or electrical signals, causing the cells to produce physio-logical responses. In the human body, after the formation of glioblastoma, it will be me-chanically stimulated by the tensile stress generated between the tumor periphery and tumor core, the blood flow in capillaries in the tumor, or the deformation of the cell membrane caused by the change of cell volume during the process of cell migration. Therefore, understanding the physical properties of cancer cells is of great significance for cancer treatment and prevention.
In this study, using glioblastoma cells (U87) as a cell model, it was demonstrated that when the cells were stimulated by sustained stretching and cyclic stretching of 11.5 piconewton (pN), the reactive oxygen species in the cells increased. After the cells are stretched, Piezo1 on the cell membrane is opened, extracellular Ca 2+ enter the cells, and the mechanical stimulation of cyclic stretching can accumulate Ca 2+ in the cells. After Ca 2+ enter the cell, the active oxygen in the mitochondria increases. Whether the F-actin in the cytoskeleton is stimulated by sustained stretching or cyclic stretching, the F-actin in the cell will proliferate and remodel, increasing the tensile strength of the cell. However, when the cell membrane is stimulated by sustained stretching for 6 seconds or cyclic stretching for a total duration of 6 seconds, the F-actin in the area below the magnetic beads will have directionality, which will help to locate the direction of cell movement. However, after 30 seconds of cyclic stimulation, F-actin has no directionali-ty. It is speculated that F-actin is damaged, which in turn affects the ability of subse-quent cell migration. Further inhibit Myosin II in the cytoskeleton to observe the rela-tionship between the cytoskeleton and mechanical stimulation, it can be found that the inhibition of Myosin II will not affect the entry of Ca 2+ into the cells during sustained stretching stimulation, but it will reduce the contraction force in the cells, cause greater cell membrane deformation, and increase the accumulation of Ca 2+ after cyclic stretch-ing stimulation. Finally, when Piezo1 was inhibited, the change of intracellular Ca 2+ was reduced, but the results of Ca 2+ accumulation were obtained after cyclic stretching mechanical stimulation.
In summary, we conducted an in-depth exploration of mechanotransduction in glio-blastoma cells, and found that mechanical stimulation with different stretching methods had different effects on cells. In addition, studies have also proved that mechanical stimulation can cause extracellular cations to enter the cell, which in turn leads to the generation of reactive oxygen species in the cell. Part of Ca 2+ can enter the cell through the Piezo1 channel, which promotes the increase of reactive oxygen species in the mito-chondria, and it has an important impact on the proliferation, remodeling and contractil-ity of cytoskeleton and F-actin. Future research can further explore the relationship be-tween mechanical stimulation and the growth and metastasis of glioblastoma, and pro-vide more effective treatment methods.
1. Nia, H.T., et al., Solid stress and elastic energy as measures of tumour mechanopathology. 2016. 1(1): p. 0004.
2. Kamoun, W.S., et al., Simultaneous measurement of RBC velocity, flux, hematocrit and shear rate in vascular networks. 2010. 7(8): p. 655-660.
3. Schwab, A., et al., Role of ion channels and transporters in cell migration. 2012.
4. Javier-Torrent, M., G. Zimmer-Bensch, and L.J.T.i.N. Nguyen, Mechanical forces orchestrate brain development. 2021. 44(2): p. 110-121.
5. Kalappurakkal, J.M., et al., Integrin mechano-chemical signaling generates plasma membrane nanodomains that promote cell spreading. 2019. 177(7): p. 1738-1756. e23.
6. Yang, B., et al., Mechanosensing controlled directly by tyrosine kinases. 2016. 16(9): p. 5951-5961.
7. Leckband, D., J.J.A.r.o.c. De Rooij, and d. biology, Cadherin adhesion and mechanotransduction. 2014. 30: p. 291-315.
8. Stephens, A.D., et al., Chromatin and lamin A determine two different mechanical response regimes of the cell nucleus. 2017. 28(14): p. 1984-1996.
9. Del Rio, A., et al., Stretching single talin rod molecules activates vinculin binding. 2009. 323(5914): p. 638-641.
10. Yao, M., et al., Force-dependent conformational switch of α-catenin controls vinculin binding. 2014. 5(1): p. 4525.
11. Walker, R.G., A.T. Willingham, and C.S.J.S. Zuker, A Drosophila mechanosensory transduction channel. 2000. 287(5461): p. 2229-2234.
12. Jin, P., et al., Electron cryo-microscopy structure of the mechanotransduction channel NOMPC. 2017. 547(7661): p. 118-122.
13. Patel, A.J., et al., A mammalian two pore domain mechano-gated S-like K+ channel. 1998. 17(15): p. 4283-4290.
14. Lesage, F., et al., Human TREK2, a 2P domain mechano-sensitive K+ channel with multiple regulations by polyunsaturated fatty acids, lysophospholipids, and Gs, Gi, and Gq protein-coupled receptors. 2000. 275(37): p. 28398-28405.
15. Coste, B., et al., Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. 2010. 330(6000): p. 55-60.
16. Ranade, S.S., et al., Piezo1, a mechanically activated ion channel, is required for vascular development in mice. 2014. 111(28): p. 10347-10352.
17. Li, J., et al., Piezo1 integration of vascular architecture with physiological force. 2014. 515(7526): p. 279-282.
18. Sun, Y., et al., The function of Piezo1 in colon cancer metastasis and its potential regulatory mechanism. Journal of Cancer Research and Clinical Oncology, 2020. 146(5): p. 1139-1152.
19. Charras, G. and A.S.J.C.B. Yap, Tensile forces and mechanotransduction at cell–cell junctions. 2018. 28(8): p. R445-R457.
20. Chigurupati, S., et al., Receptor Channel TRPC6 Is a Key Mediator of Notch-Driven Glioblastoma Growth and InvasivenessExpression and Function of TRPC6 in Glioblastomas. 2010. 70(1): p. 418-427.
21. Fang, J., et al., P2X7R suppression promotes glioma growth through epidermal growth factor receptor signal pathway. 2013. 45(6): p. 1109-1120.
22. Wei, W., et al., Expression and function of the P2X7 receptor in rat C6 glioma cells. 2008. 260(1-2): p. 79-87.
23. Liu, H., et al., Calcium entry via ORAI1 regulates glioblastoma cell proliferation and apoptosis. 2011. 91(3): p. 753-760.
24. Valerie, N.C., et al., Inhibition of T-type calcium channels disrupts Akt signaling and promotes apoptosis in glioblastoma cells. 2013. 85(7): p. 888-897.
25. Ishii, M., et al., Facilitation of H2O2-induced A172 human glioblastoma cell death by insertion of oxidative stress-sensitive TRPM2 channels. 2007. 27(6B): p. 3987-3992.
26. Chen, S.-j., et al., Role of TRPM2 in cell proliferation and susceptibility to oxidative stress. 2013. 304(6): p. C548-C560.
27. Motiani, R.K., et al., STIM1 and Orai1 mediate CRAC channel activity and are essential for human glioblastoma invasion. 2013. 465(9): p. 1249-1260.
28. Zhang, Y., et al., Targetable T-type Calcium Channels Drive GlioblastomaRole and Targeting of Calcium Channels in Glioblastoma. 2017. 77(13): p. 3479-3490.
29. Bomben, V.C. and H.J.G. Sontheimer, Disruption of transient receptor potential canonical channel 1 causes incomplete cytokinesis and slows the growth of human malignant gliomas. 2010. 58(10): p. 1145-1156.
30. Ding, X., et al., Essential role of TRPC6 channels in G2/M phase transition and development of human glioma. 2010. 102(14): p. 1052-1068.
31. Bomben, V.C., et al., Transient receptor potential canonical channels are essential for chemotactic migration of human malignant gliomas. 2011. 226(7): p. 1879-1888.
32. Liu, M., et al., TRPM7 channels regulate glioma stem cell through STAT3 and Notch signaling pathways. 2014. 26(12): p. 2773-2781.
33. Nabissi, M., et al., TRPV2 channel negatively controls glioma cell proliferation and resistance to Fas-induced apoptosis in ERK-dependent manner. 2010. 31(5): p. 794-803.
34. Morelli, M.B., et al., The transient receptor potential vanilloid‐2 cation channel impairs glioblastoma stem‐like cell proliferation and promotes differentiation. 2012. 131(7): p. E1067-E1077.
35. Chemin, J., J. Nargeot, and P.J.N. Lory, Cav3. 2 calcium channels control an autocrine mechanism that promotes neuroblastoma cell differentiation. 2004. 15(4): p. 671-675.
36. Maklad, A., A. Sharma, and I.J.C. Azimi, Calcium signaling in brain cancers: roles and therapeutic targeting. 2019. 11(2): p. 145.
37. Adams, D.J., et al., Ion channels and regulation of intracellular calcium in vascular endothelial cells. 1989. 3(12): p. 2389-2400.
38. Qin, L., et al., Roles of mechanosensitive channel Piezo1/2 proteins in skeleton and other tissues. 2021. 9(1): p. 1-17.
39. Retailleau, K., et al., Piezo1 in smooth muscle cells is involved in hypertension-dependent arterial remodeling. 2015. 13(6): p. 1161-1171.
40. Koser, D.E., et al., Mechanosensing is critical for axon growth in the developing brain. 2016. 19(12): p. 1592-1598.
41. Martins, J.R., et al., Piezo1-dependent regulation of urinary osmolarity. 2016. 468: p. 1197-1206.
42. Jiang, Y., et al., Structural designs and mechanogating mechanisms of the mechanosensitive piezo channels. 2021. 46(6): p. 472-488.
43. Wu, Z., et al., Mechanosensory hair cells express two molecularly distinct mechanotransduction channels. 2017. 20(1): p. 24-33.
44. Nonomura, K., et al., Piezo2 senses airway stretch and mediates lung inflation-induced apnoea. 2017. 541(7636): p. 176-181.
45. Wang, F., et al., Mechanosensitive ion channel Piezo2 is important for enterochromaffin cell response to mechanical forces. 2017. 595(1): p. 79-91.
46. Basoli, F., et al., Biomechanical characterization at the cell scale: present and prospects. 2018. 9: p. 1449.
47. Falleroni, F., V. Torre, and D.J.F.i.c.n. Cojoc, Cell mechanotransduction with piconewton forces applied by optical tweezers. 2018. 12: p. 130.
48. Gaub, B.M. and D.J.J.N.l. Muller, Mechanical stimulation of Piezo1 receptors depends on extracellular matrix proteins and directionality of force. 2017. 17(3): p. 2064-2072.
49. Gnanasambandam, R., et al., GsMTx4: mechanism of inhibiting mechanosensitive ion channels. 2017. 112(1): p. 31-45.
50. Kheirollahi, M., et al., Brain tumors: Special characters for research and banking. 2015. 4.
51. Wu, W., et al., Glioblastoma multiforme (GBM): An overview of current therapies and mechanisms of resistance. 2021. 171: p. 105780.
52. Killock, D., Lomustine–temozolomide combination efficacious in newly diagnosed glioblastoma. Nature Reviews Clinical Oncology, 2019. 16(5): p. 273-273.
53. Chen, X., et al., A feedforward mechanism mediated by mechanosensitive ion channel PIEZO1 and tissue mechanics promotes glioma aggression. 2018. 100(4): p. 799-815. e7.
54. Qu, S., S. Li, and Z. Hu, Upregulation of Piezo1 Is a Novel Prognostic Indicator in Glioma Patients. Cancer Manag Res, 2020. 12: p. 3527-3536.
55. Grossen, A., et al., Physical Forces in Glioblastoma Migration: A Systematic Review. 2022. 23(7): p. 4055.
56. Bavi, N., et al., PIEZO1-mediated currents are modulated by substrate mechanics. 2019. 13(11): p. 13545-13559.
57. Pathak, M.M., et al., Stretch-activated ion channel Piezo1 directs lineage choice in human neural stem cells. 2014. 111(45): p. 16148-16153.
58. Lewis, A.H. and J.J.E. Grandl, Mechanical sensitivity of Piezo1 ion channels can be tuned by cellular membrane tension. 2015. 4: p. e12088.
59. Gudipaty, S.A., et al., Mechanical stretch triggers rapid epithelial cell division through Piezo1. 2017. 543(7643): p. 118-121.
60. Yarishkin, O., et al., Piezo1 channels mediate trabecular meshwork mechanotransduction and promote aqueous fluid outflow. 2021. 599(2): p. 571-592.
61. Jetta, D., et al., Shear stress-induced nuclear shrinkage through activation of Piezo1 channels in epithelial cells. 2019. 132(11): p. jcs226076.
62. Zhang, L., et al., Activation of Piezo1 by ultrasonic stimulation and its effect on the permeability of human umbilical vein endothelial cells. 2020. 131: p. 110796.
63. Nourse, J.L. and M.M. Pathak. How cells channel their stress: Interplay between Piezo1 and the cytoskeleton. in Seminars in cell & developmental biology. 2017. Elsevier.
64. Cox, C.D., et al., Removal of the mechanoprotective influence of the cytoskeleton reveals PIEZO1 is gated by bilayer tension. 2016. 7(1): p. 1-13.
65. Chugh, P. and E.K. Paluch, The actin cortex at a glance. Journal of Cell Science, 2018. 131(14).
66. Herrera-Cruz, M.S. and T.J.F.i.o. Simmen, Cancer: untethering mitochondria from the endoplasmic reticulum? 2017. 7: p. 105.
67. Morciano, G., et al., Role of mitochondria-associated ER membranes in calcium regulation in cancer-specific settings. 2018. 20(5): p. 510-523.
68. Sies, H. and D.P.J.N.r.M.c.b. Jones, Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. 2020. 21(7): p. 363-383.
69. Wong, H.-S., et al., Mitochondrial and cytosolic sources of hydrogen peroxide in resting C2C12 myoblasts. 2019. 130: p. 140-150.
70. Hansford, R.G.J.J.o.b. and biomembranes, Physiological role of mitochondrial Ca2+ transport. 1994. 26(5): p. 495-508.
71. Liu, X., et al., The existence of a nonclassical TCA cycle in the nucleus that wires the metabolic-epigenetic circuitry. 2021. 6(1): p. 1-18.
72. Denton, R.M.J.B.e.B.A.-B., Regulation of mitochondrial dehydrogenases by calcium ions. 2009. 1787(11): p. 1309-1316.
73. Williams, G.S., et al., Mitochondrial calcium and the regulation of metabolism in the heart. 2015. 78: p. 35-45.
74. Muller, F.L., Y. Liu, and H.J.J.o.B.C. Van Remmen, Complex III releases superoxide to both sides of the inner mitochondrial membrane. 2004. 279(47): p. 49064-49073.
75. Hempel, N. and M.J.C.c. Trebak, Crosstalk between calcium and reactive oxygen species signaling in cancer. 2017. 63: p. 70-96.
76. Sohal, R. and R. Allen, Relationship between metabolic rate, free radicals, differentiation and aging: a unified theory, in Molecular biology of aging. 1985, Springer. p. 75-104.
77. Delierneux, C., et al., Mitochondrial Calcium Regulation of Redox Signaling in Cancer. 2020. 9(2): p. 432.
78. Yu, Z., et al., A force calibration standard for magnetic tweezers. 2014. 85(12): p. 123114.
79. Falleroni, F., et al., Mechanotransduction in hippocampal neurons operates under localized low picoNewton forces. 2022. 25(2): p. 103807.
80. Mierke, C.T., et al., Effect of PAK inhibition on cell mechanics depends on Rac1. 2020. 8: p. 13.
81. Marjoram, R., C. Guilluy, and K.J.M. Burridge, Using magnets and magnetic beads to dissect signaling pathways activated by mechanical tension applied to cells. 2016. 94: p. 19-26.
82. Monteith, G.R., N. Prevarskaya, and S.J.J.N.R.C. Roberts-Thomson, The calcium–cancer signalling nexus. 2017. 17(6): p. 373-380.
83. Baev, A.Y., et al., Interaction of Mitochondrial Calcium and ROS in Neurodegeneration. Cells, 2022. 11(4).
84. Brás-Pereira, C. and E.J.C.o.i.c.b. Moreno, Mechanical cell competition. 2018. 51: p. 15-21.
85. Paravicini, T.M. and R.M. Touyz, Redox signaling in hypertension. Cardiovascular Research, 2006. 71(2): p. 247-258.
86. Jiang, F., et al., The mechanosensitive Piezo1 channel mediates heart mechano-chemo transduction. 2021. 120(3): p. 102a-103a.
87. Yin, Q., et al., Agonist-induced Piezo1 activation promote mitochondrial-dependent apoptosis in vascular smooth muscle cells. 2022. 22(1): p. 287.
88. Brookes, P.S., et al., Calcium, ATP, and ROS: a mitochondrial love-hate triangle. 2004.
89. De Stefani, D., R. Rizzuto, and T.J.A.r.o.b. Pozzan, Enjoy the trip: calcium in mitochondria back and forth. 2016. 85: p. 161-192.
90. Glancy, B. and R.S.J.B. Balaban, Role of mitochondrial Ca2+ in the regulation of cellular energetics. 2012. 51(14): p. 2959-2973.
91. Peng, T.I. and M.J.J.A.o.t.N.Y.A.o.S. Jou, Oxidative stress caused by mitochondrial calcium overload. 2010. 1201(1): p. 183-188.
92. Kim, J.-C., et al., Shear stress enhances Ca2+ sparks through Nox2-dependent mitochondrial reactive oxygen species generation in rat ventricular myocytes. 2017. 1864(6): p. 1121-1131.
93. Liang, X., et al., Cyclic stretch induced oxidative stress by mitochondrial and NADPH oxidase in retinal pigment epithelial cells. 2019. 19(1): p. 1-8.
94. Gourlay, C.W. and K.R.J.N.r.M.c.b. Ayscough, The actin cytoskeleton: a key regulator of apoptosis and ageing? 2005. 6(7): p. 583-589.
95. Wilson, C. and C.J.F.i.c.n. González-Billault, Regulation of cytoskeletal dynamics by redox signaling and oxidative stress: implications for neuronal development and trafficking. 2015. 9: p. 381.
96. Schieber, M. and N.S.J.C.b. Chandel, ROS function in redox signaling and oxidative stress. 2014. 24(10): p. R453-R462.
97. Horn, A., et al., Mitochondrial redox signaling enables repair of injured skeletal muscle cells. Sci Signal, 2017. 10(495).
98. Harris, A.R., P. Jreij, and D.A.J.A.r.o.b. Fletcher, Mechanotransduction by the actin cytoskeleton: converting mechanical stimuli into biochemical signals. 2018. 47: p. 617-631.
99. Ng, C.P., B. Hinz, and M.A.J.J.o.c.s. Swartz, Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. 2005. 118(20): p. 4731-4739.
100. Van Helvert, S., C. Storm, and P.J.N.c.b. Friedl, Mechanoreciprocity in cell migration. 2018. 20(1): p. 8-20.
101. Pathak, M.M., et al., Stretch-activated ion channel Piezo1 directs lineage choice in human neural stem cells. 2014. 111(45): p. 16148-16153.