簡易檢索 / 詳目顯示

研究生: 洪捷粲
論文名稱: 電腦模擬研究電感耦合式乙炔電漿源
指導教授: 胡瑗
林滄浪
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 188
中文關鍵詞: 電漿乙炔電感耦合式電漿源奈米碳管
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本論文中我們發展了一套二維電感耦合式乙炔電漿源流體模擬程式。流
    體模型中我們考慮了中性氣體及帶電荷粒子的連續方程式與電子的能量
    守恆方程式,計算電漿中各種粒子密度及電子溫度的空間分佈。程式中
    利用馬克斯威爾方程式計算電漿腔內的感應電場分佈;並利用帕松方程
    式解空間中的靜電場分佈。模擬的電漿腔體為圓柱型,高18公分,半
    徑17公分;在側邊有三圈感應線圈。模擬中考慮了27種不同的粒子,包含電子、16種中性粒子與10種離子,化學反應式中考慮了電子碰撞游離反應、電子碰撞解離反應、離子與中性粒子反應、中性粒子間反應。
    邊界壁上反應則只考慮離子在邊界上的中性化反應。
    模擬結果在氣壓100mTorr,進氣為乙炔氣體100sccm,電漿吸收功率為300W的情況下所得到的模擬結果為:主要反應區(電漿區)的電子密度達到7.42x1018(1/m3);反應區內的平均電子溫度為1.1eV;電漿中主要的離子依密度大小由高到低依次為C4H2+、C6H2+、C8H2+及H2+;氣體組成中依密度大小順序依次為H2、C4H2、C2H2與C6H2。電漿中自由基對碳管成長有很重要的影響,依密度大小順序依次為C4H3、C6H3
    C8H、由於電漿中電子密度高,容易發生解離反應。C2H2在進入腔體後,容易被解離產生自由基C2H與H。C2H會與其他粒子反應生成質量更大的聚合物;而H則容易經化學反應產生H2。由結果發現電漿密度的大小,會影響電漿當中的氣體組成。當電漿密度高時解離反應增加會增加聚合物與H2密度。
    另外我們也將模擬程式進行平行化,在多台PC架設MPI平行處理架構,利用分散式平行運算增快運算速度,減少模擬所需時間。


    List of Figures List of Tables 3 簡介 4 文獻回顧 1 碳氫氣電漿源實驗量測 2 碳氫氣電漿源數值模擬 - 甲烷 3 碳氫氣電漿源數值模擬 - 乙炔 5 電感式電漿源基本原理 1 電感式電漿源簡介 2 電感式電漿源加熱理論 1 碰撞加熱 2 非碰撞加熱 6 二維時變流體模型及數值模擬方法 1 電漿模擬流體模型 1 電子流體模型 2 離子流體模型 3 中性粒子流體模型 2 感應電場的計算 3 空間電位計算 4 化學反應 7 二維流體碳氫氣電漿源模擬結果與討論 1 電漿參數隨時間變化結果 2 空間分佈結果 1 電漿參數 2 電子空間分佈 3 H 空間分佈 4 H 空間分佈 5 CH 與 CH 空間分佈 6 CH 、 CH、 CH 與 CH 空間分佈 7 CH 空間分佈 8 CH CH 與CH 空間分佈 9 CH CH 與CH 空間分佈 10 H 與 H 空間分佈 11 C、 CH、 C 與 CH 空間分佈 12 CH 空間分佈 13 CH 空間分佈 14 CH 與 CH 空間分佈 8 結論 A. 數值方法 B. 二維流體碳氫氣電漿源模擬結果與討論-簡化化學式反應式模擬 1 電漿參數隨時間變化結果 2 空間分佈結果 1 電漿參數 2 電子空間分佈 3 H 空間分佈 4 H 空間分佈 5 CH 、 CH、與 CH 空間分佈 6 CH 空間分佈 7 CH CH 與CH 空間分佈 8 CH CH 與CH 空間分佈 9 H 與 H 空間分佈 10 CH、CH、CH 與 CH 空間分佈 3 結果與討論 C. 數值方法 1 電漿電位計算有限差分展開 D. PC Cluster 架設 1 硬體簡介 2 軟體需求 3 系統設定 Bibliography

    [1]Sung-Pill Hong, Hiromichi Yoshikawa, Koichiro Wazumi, and Yoshiniri Koga.
    Synthesis and tribological characteristics of nanocrystalline diamond film using CH/H microwave plasmas.
    Diamond and Related Materials, 11:877, 2002.
    [2]A. Heiman, E. Lakin, E. Zolotoyabko, and A. Hoffman.
    Microstructure and stress in nano-crystalline diamond films deposited by DC glow discharge CVD.
    Diamond and Related Materials, 11:601, 2002.
    [3]R. G. Lacerda, V. Stolojan, D. C. Cox, S. R. P. Silva, and F. C. Marques.
    Structural characterization of hard a-c:h film as a function of the methane pressure.
    Diamond and Related Materials, 11:980, 2002.
    [4]M. A. Guillorn, A. V. Melechko, V. I. Merkulov, C. L. Britton, M. L. Simpson, and D. H. Lowndes.
    Self-aligned gates field emission device using single carbon nanofiber cathodes.
    Appl. Phys. Lett., 81(19):3660, September 2002.
    [5]J. Benedikt.
    Plasma chemistry during deposition of a-C:H.
    Diamond and Delated Materials, 11:989, 2002.
    [6]S. Iijima.
    Helical microtubules of graphitic carbon.
    Nature, 354:56, 1991.
    [7]S. Iijima and T. Ichihashi.
    Single-shell carbon nanotubes of 1-nm diameter.
    Nature, 363:603-605, 1993.
    [8]Sumio Iijima R&D Group.
    Carbon nanotubes and their recent develeoments.
    IEEE, page 250, 1998.
    [9]Yahachi Saito.
    Preparation and Properties of Carbon Nanotubes.
    In 1999 International Symposium on Micromechatronics and Human Science, page 43, 1999.
    [10]L. Delzeit, I. MaAninch, B. A. Cruden, D. Hash, B. Chen, J. Han, and M. Meyyappan.
    Growth of multiwall carbon nanotubes in an inductively coupled plasma reactor.
    J. Appl. Phys., 91(9):6027, May 2002.
    [11]S.J. Tans, M.H. Devoret, H. Dai, A. Thess, R.E. Smalley, L.J. Geerligs, and C. Dekker.
    Individual single-wall nanotubes as quantum wires.
    Nature, 386:474-477, 1997.
    [12]S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, and H. Dai.
    Self-oriented regular arrays of carbon nanotubes and their field emission properties.
    Science, 283:512-514, 1998.
    [13]M. A. Guillorn, A. V. Melechko, V. I. Merkulov, E. D. Ellis, C. L. Britton, M. L. Simpson, and D. H. Lowndes.
    Operation of a gated field emitter using an individual carbon nanofiber cathod.
    Appl. Phys. Lett., 79(21):3506, September 2001.
    [14]R. Martel, T Schmidt, H.R. Shea, T. Hertel, and P Avouris.
    Single and multi-wall carbon nanotube field-effect transistors.
    Applied Physics Letters, 73:2447-2449, 1998.
    [15]Meyyappan, Lance Delzeit, Alan Cassell1, and David Hash.
    Carbon nanotube growth by PECVD: a review.
    Plasma Sources Sci. Technol., 12:205, 2003.
    [16]Luiun Pan, Mei Zhang, Yoshikazu, and Nakayama.
    Growth mechanism of carbon nanocoils.
    J. Appl. Phys., 91:10058, 2002.
    [17]Chao Hsun Lin, Hui Lin Chang, Ming Her Tsai, and Cheng Tzu Kuo.
    Growth mechane and properties of the large area well-aligned carbon nano-structures deposited by microwave plasma electron cyclotron resonance chemical vapor deposition.
    Diamond and Related Materials, 11:922, 2002.
    [18]Minjae Jung, Kwang Yong Eun, Young-Joon Baik, Kwang-Ryeol Lee, Jin-Koog Shin, and Sung-Tae Kim.
    Effect of NH environmental gas on the growth of aligned carbon nanotubes in catalystically pyrolizing CH.
    Thin Solid Film, 398-399:150, 2001.
    [19]L. Valentini, J. M. Kenny, and S. Santucci L. Lozzi.
    Formation of carbon nanotubes by plasma enhanced chemical vapor deposition: Role of nitrogen and catalyst layer thickness.
    J. Appl. Phys., 92:6188, 2002.
    [20]S. Stoykov, C. Eggs, and U. Kortshagen.
    Plasma chemistry and growth of nanosized particles in CH rf discharge.
    J. Phys. D, 34:2160, 2001.
    [21]David Hash, Deepak Bose, T. R. Govindan, and M. Meyyappan.
    Simulation of the dc plasma in carbon nanotube growth.
    J. Appl. Phys., 93(10):6284, 2003.
    [22]C. L. Tsai, C. F. Chen, and L. K. Wu.
    Bias effect on the growth of carbon nanotips using microwave plasma chemical vapor deposition.
    Applied Physics Letters, 81(4):721, July 2002.
    [23]Toshihiro Fujii.
    Neutral product analysis of the microwave plasma: , , , , and larger species.
    J. Appl. Phys., 82(5):2056, September 1997.
    [24]Ch. Deschenaux, A. Affolter, D. Magni, Ch. Hollenstein, and P. Fayet.
    Investigations of , and dusty RF plasmas by means of FTIR absorption spectroscopy and mass spectrometry.
    J. Phys. D: Appl. Phys., 32:1876, 1999.
    [25]James R. Doyle.
    Chemicalkinetic in low pressure acetylene radio frequency glow discharge.
    J. Appl. Phys., 82(10):4763, 1997.
    [26]R. Engeln, K. G. Y. Letourneur, M. G. H. Boogaarts, M. C. M. Van de Sanden, and D. C. Schram.
    Detection of CH in an expanding argon/acetylene plasma using cavity ring down absorption spectrosopy.
    Chem. Phys. Lett., 310:405, 99.
    [27]Kallol Bera, Jeong W. Yi, Bakhtier Farouk, and Young H. Lee.
    Two-dimensional radio-frequency methane plasma simulation: Comparison with experiments.
    IEEE Trans. Plasma Sci., 27(5):1476, October 1999.
    [28]K Bera, B Farouk, and P Vitello.
    Inductively coupled radio frequency methane plasma simulation.
    J. Phys. D: Appl. Phys., 34:1479, 2001.
    [29]M. Frenklach, D. W. Clary, T. Yuan, JR. W. C. Gardiner, and S. E. Stein.
    Mechanism of soot formation in acetylene-oxygen mixture.
    Combust. Sci. and Tech., 50:79, 1986.
    [30]D. Herrebout, A. Bogaerts, M. Yan, and R. Gijbels.
    One-dimensional fluid model for an rf methane plasma of interest in deposition of diamond-like carbon layers.
    J. Appl. Phys., 90(2):570, 2001.
    [31]D. Herrebout, A. Bogaerts, R. Gijbels, W. J. Goedheer, and A. Vanhulsel.
    One-dimensional fluid model for an acetylene rf discharge: A study of

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE