研究生: |
李泓嶔 Lee, Hung-Chin |
---|---|
論文名稱: |
單層FeTe薄膜在拓樸絕緣體Bi2Te3上的成長與分析 Growth and Characterization of Monolayer FeTe on Topological Insulator Bi2Te3 |
指導教授: |
徐斌睿
Hsu, Pin-Jui |
口試委員: |
陸大安
Luh, Dah-An 蘇蓉蓉 Su, Jung-Jung |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 129 |
中文關鍵詞: | 自旋-軌道耦合 、拓樸絕緣體 、分子束磊晶 、掃描穿隧顯微鏡 |
外文關鍵詞: | Spin-Orbital Coupling, Topological Insulator, Molecular Beam Expitaxy, Scanning Tunneling Microscope |
相關次數: | 點閱:60 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
凝態物理學研究固態和液態物質的物理性質,重點關注超導性、磁性和自旋軌道耦合(SOC)等現象。SOC 顯著影響材料的電子、磁性和光學性質,對於發展包括自旋電子學和量子計算在內的先進技術至關重要。本研究除了試圖建立分子束磊晶(MBE)技術並嘗試製造出具有特定性質的高品質晶體材料外,還透過兩個系統試圖探索 SOC 與磁性或超導性之間的相互作用。
研究分為三部分。第一部分研究 Ag(111) 上的 BiAg2 √3 × √3 R30◦ 薄膜上的少量鐵酞菁(FePc)分子行為,在此系統中,FePc 分子提供磁性,而 BiAg2薄膜具有顯著的 Rashba 效應並提供非常強的 SOC。第二部分聚焦於 FeTe 薄膜在塊狀 Bi2Te3 上的研究,該部分研究 FeTe 和 Bi2Te3 之間的層間超導性,此外Bi2Te3 作為一種常見的拓撲絕緣體 (Topological Insulator),具有非常強的 SOC效應,兩者結合為研究超導性與 SOC 之間的相互作用提供平台。最後一部分是建立 MBE 系統在 Si(111) 表面上生長 Bi2Te3 薄膜,我們試圖生產高品質的拓
撲絕緣體薄膜,已允許我們進一步研究磁性與拓撲絕緣體或超導性與拓撲絕緣
體的結合。
在第一部分中,研究了 FePc 分子在 BiAg2√3 × √3 R30◦ 表面上的行為,以觀察磁性與 Rashba 表面的相互作用。在 77 K 條件下分析 FePc 分子的行為,發現分子在此溫度下呈現靜態和旋轉兩種不同的狀態。利用掃描隧道顯微鏡(STM)實現了對 FePc 分子在兩個態之間的可重複操控,並繪製了分子的 dI/dV 特性圖,闡明其電子特性。
第二部分通過研究 FeTe 薄膜在塊狀 Bi2Te3 上的行為複製了先前的實驗。在77 K 條件下,我們測量出 FeTe 在 Bi2Te3 上具有兩種晶相:一個具有 8 × 2 超晶格相,而另一個只是單純的四方晶格。由於反鐵磁性和電子波性質只發生在低溫,因此推測單純四方晶格相在低溫下會轉變為 2 × 1 條紋相,這與先前的研究一致。
第三部分使用 MBE 技術在 Si(111) 表面上生長了 Bi2Te3 薄膜。通過優化生長參數,獲得了適合進一步測量的平坦、乾淨的表面。調整基底溫度和沉積速率減少了鉍缺陷群聚 (Cluster) 的數量,表明參數優化過程的有效性。
本綜合研究旨在深入理解 SOC 及其與磁性或超導性結合時的影響,為材料科學和技術的進步提供見解和進展。
Condensed matter physics investigates the physical properties of matter in solid and liquid phases, with a focus on phenomena such as superconductivity, magnetism, and spin-orbit coupling (SOC). SOC significantly influences the electronic, magnetic, and optical properties of materials and is crucial for developing advanced technologies, including spintronics and quantum computing. This study
explores the interplay between SOC and magnetism or superconductivity, and trying to establish molecular beam epitaxy (MBE) system to create high-quality crystalline materials with tailored properties.
The research is divided into three parts. The first part investigates iron phthalocyanine (FePc) molecules on a BiAg2 √3 × √3 R30◦ thin film on Ag(111), where FePc molecules provide magnetism and the BiAg2 phase, induced by strong SOC, offers a significant Rashba effect surface. In the second part, the focus is on FeTe thin films on bulk Bi2Te, providing a platform to study the interplay between superconductivity and SOC due to the inter-layer superconductivity between FeTe and Bi2Te. Bi2Te3, a well-known topological insulator, exhibits a strong SOC effect. The final part involves establishing an MBE system to grow
Bi2Te3 thin films on Si(111), enabling the production of high-quality topological insulator thin films. This allows further research on the combination of magnetism with topological insulators or superconductivity with topological insulators.
In the first part, FePc molecules on a BiAg2 √3 × √3R30◦ surface were studied to observe the interaction of magnetism with a large Rashba surface. The behavior of FePc molecules on this surface at 77 K was characterized, revealing static and rotating phases. Manipulation of FePc molecules was achieved using scanning tunneling microscopy (STM), and the dI/dV characteristics of the molecules were mapped to elucidate their electronic properties.
The second part replicated previous experiments by studying FeTe thin films on bulk Bi2Te3. Measurements at 77 K revealed two phases: an 8 × 2 SL phase and a tetragonal lattice. The antiferromagnetic and electronic wave properties at low temperatures suggest a transition to a 2 × 1 stripe phase, consistent with previous studies.
In the third part, Bi2Te3 thin films were grown on Si(111) surfaces using MBE. The optimization of growth parameters resulted in flat, clean surfaces suitable for further measurements. Adjusting the substrate temperature and deposition rates reduced the presence of bismuth clusters, indicating the effectiveness of the parameter optimization process.
This comprehensive study aims to deepen the understanding of SOC and its effects when combined with magnetism or superconductivity, providing insights and advancements in material science and technology.
[1] He, Z., Ho, T. S. M., Lortz, R. & Sou, I. K. Intra-Family Transformation of The Bi-Te Family via in-situ Chemical Interactions (2024). URL https://arxiv.org/abs/2312.10408. Accessed on 07/09/2024, 2312.10408.
[2] de Haas, W., de Boer, J. & van dën Berg, G. The Electrical Resistance of Gold, Copper and Lead at Low Temperatures. Physica 1, 1115–1124 (1934).
[3] Ternes, M., Heinrich, A. & Schneider, W.-D. Spectroscopic Manifestations of the Kondo Effect on Single Atoms. J. Phys. Condens. Matter. 21, 053001 (2009).
[4] Zanotti, G. et al. Bridged Phthalocyanine Systems for Sensitization of Nanocrystalline TiO2 Films. Int. J. Photoenergy 2010, 136807 (2010).
[5] Tian, S. et al. Internal Flow and Cavitation Analysis of Scroll Oil Pump by CFD Method. Processes 9, 1705 (2021).
[6] Bishop, C. Vacuum Deposition onto Webs, Films and Foils (William Andrew, 2011).
[7] International, V. A. An Introduction to Vacuum Pumps.
(2016). URL https://vacaero.com/information-resources/vacuum-pump-technology-education-and-training/1039-an-introduction-to-vacuum-pumps.html. Accessed on 07/09/2024.
[8] Incorporated, T. L. Titanium Sublimation. URL https://thermionics.
com/product/titanium-sublimation/. Accessed on 07/09/2024.
[9] FOCUS. UHV Evaporator EFM 2/3(s)/4(s). Instruction Manual. (FOCUS.,
2017).
[10] corporation, M. In-Situ Thin Film Thickness / Deposition Rate Monitor with Software, and Optional Sensor, Quartz Crystals - EQ-TM106-LD. URL https://www.mtixtl.com/Film-thickness-controller.aspx. Ac-
cessed on 07/09/2024.
[11] k Space ASSOCIATES, I. What Do You Need to Use
the KSA 400? URL https://k-space.com/document/application-notes-ksa-400-what-you-need-for-rheed/. Accessed on 07/09/2024.
[12] Derriche, N., Godin, S., Greenwood, R., Mercado, A. & Warner, A. Reflection High–Energy Electron Diffraction. Energy 8, 10–100eV (2019).
[13] Malinverni, M. Optimization of NH3-MBE Grown p-Doped (Al) GaN Layers and Their Implementation in Long Wavelength Laser Diodes and Tunnel Junctions. Tech. Rep., EPFL (2015).
[14] Trixler, F. Quantum Tunnelling to the Origin and Evolution of Life. Curr. Org. Chem. 17, 1758–1770 (2013).
[15] Tersoff, J. & Hamann, D. R. Theory and Application for the Scanning Tunneling Microscope. Phys. Rev. Lett. 50, 1998 (1983).
[16] Huda, M. Epitaxial Growth of Lateral Graphene / Hexagonal Boron Nitride Heterostructures. Phys. Adv. Mater. 46 (2016).
[17] Unisoku. USM1300S He 3E. Operating Manual. (Unisoku., 2018).
[18] USA, N. What is Atomic Force Microscopy (AFM). URL https://www.nanoandmore.com/what-is-atomic-force-microscopy. Accessed on 07/09/2024.
[19] Core, W. C. M. C. X-ray Photoelectron Spectroscopy (XPS). URL https://ywcmatsci.yale.edu/xps. Accessed on 07/09/2024.
[20] Galitski, V. & Spielman, I. B. Spin–Orbit Coupling in Quantum Gases. Nature, 494, 49–54 (2013).
[21] Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: Fundamentals and Applications. Rev. Mod. Phys. 76, 323–410 (2004).
[22] Kormányos, A., Zólyomi, V., Drummond, N. D. & Burkard, G. Spin-Orbit Coupling, Quantum Dots, and Qubits in Monolayer Transition Metal Dichalcogenides. Phys. Rev. X 4, 011034 (2014).
[23] Lu, L. et al. Magnetism and Local Symmetry Breaking in a Mott Insulator with Strong Spin Orbit Interactions. Nat. Commun. 8, 14407 (2017).
[24] Bogani, L. & Wernsdorfer, W. Molecular Spintronics Using Single-Molecule Magnets. Nat. Mater. 7, 179–186 (2008).
[25] Qi, X.-L. & Zhang, S.-C. Topological Insulators and Superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).
[26] Smidman, M., Salamon, M., Yuan, H. & Agterberg, D. Superconductivity and Spin–Orbit Coupling in Non-Centrosymmetric Materials: A Review. Rep. Prog. Phys. 80, 036501 (2017).
[27] Zhang, X., Liu, J. & Liu, F. Topological Superconductivity Based on Antisymmetric Spin–Orbit Coupling. Nano. Lett. 22, 9000–9005 (2022).
[28] Leijnse, M. & Flensberg, K. Introduction to Topological Superconductivity and Majorana Fermions. Semicond. Sci. Technol. 27, 124003 (2012).
[29] Sato, M. & Fujimoto, S. Majorana Fermions and Topology in Superconductors. J. Phys. Soc. Jpn. 85, 072001 (2016).
[30] Arthur, J. R. Molecular Beam Epitaxy. Surf. Sci. 500, 189–217 (2002).
[31] Cho, A. Y. & Arthur, J. Molecular Beam Epitaxy. Prog. Solid State Chem. 10, 157–191 (1975).
[32] Bartolomé, J., Monton, C. & Schuller, I. K. Magnetism of Metal
Phthalocyanines. In Molecular Magnets: Physics and Applications, 221–245 (Springer, 2014).
[33] Frantzeskakis, E., Crepaldi, A., Pons, S., Kern, K. & Grioni, M. Tuning the Giant Rashba Effect on a BiAg2 Surface Alloy: Two Different Approaches. J. Electron. Spectrosc. Relat. Phenom. 181, 88–95 (2010).
[34] He, Q. L. et al. Two–Dimensional Superconductivity at the Interface of a Bi2Te3/FeTe Heterostructure. Nat. Commun. 5, 4247 (2014).
[35] Chen, Y. et al. Experimental Realization of a Three–Dimensional Topological Insulator, Bi2Te3. science 325, 178–181 (2009).
[36] Ast, C. R. et al. Giant Spin Splitting through Surface Alloying. Phys. Rev. Lett. 98, 186807 (2007).
[37] Kügel, J. et al. Reversible Magnetic Switching of High–Spin Molecules on a Giant Rashba Surface. Npj Quantum Mater. 3, 53 (2018).
[38] Tu, Y.-B. et al. Monitoring and Manipulating Single Molecule Rotors on the Bi(111) Surface by the Sanning Tunneling Microscopy. RSC Adv. 7, 34262–34266 (2017).
[39] Arnold, F. et al. Electronic Structure of Fe1.08Te Bulk Crystals and Epitaxial FeTe thin films on Bi2Te3. J. condens. Matter Phys. 30, 065502 (2018).
[40] Manna, S. et al. Interfacial Superconductivity in a Bi-Collinear Antiferromagnetically Ordered FeTe Monolayer on a Topological Insulator. Nat. Commun. 8, 14074 (2017).
[41] Qin, H. et al. Moire Superlattice–Induced Superconductivity in One-Unit-Cell FeTe. Nano Lett. 21, 1327–1334 (2021).
[42] Li, Y.-Y. et al. Growth Dynamics and Thickness–Dependent Electronic Structure of Topological Insulator Bi2Te3 Thin Films on Si. arXiv preprint arXiv:0912.5054 (2009).
[43] Blume, M. & Watson, R. Theory of Spin-Orbit Coupling in Atoms I.
Derivation of the Spin–Orbit Coupling Constant. Proc. R. Soc. Lond. Ser. A-Contain. Pap. Math. Phys. Character 270, 127–143 (1962).
[44] Fu, J. & Wu, M. Spin–Orbit Coupling in Bulk ZnO and GaN. J. Appl. Phys. 104 (2008).
[45] Bihlmayer, G., Rader, O. & Winkler, R. Focus on the Rashba Effect. New J. Phys. 17, 050202 (2015).
[46] Hasan, M. Z. & Kane, C. L. Colloquium: Topological Insulators. Rev. Mod. Phys. 82, 3045 (2010).
[47] Noh, H.-J. et al. Spin–Orbit Interaction Effect in the Electronic Structure of Bi2Te3 Observed by Angle–Resolved Photoemission Spectroscopy. Europhys. Lett. 81, 57006 (2008).
[48] Gmitra, M., Konschuh, S., Ertler, C., Ambrosch-Draxl, C. & Fabian, J. Band-Structure Topologies of Graphene: Spin–Orbit Coupling Effects from First Principles. Phys. Rev. B 80, 235431 (2009).
[49] Gujarathi, S., Alam, K. & Pramanik, S. Magnetic-Field-Induced Spin Texture in a Quantum Wire with Linear Dresselhaus Spin–Orbit Coupling. Phys. Rev. B 85, 045413 (2012).
[50] Tokura, Y., Yasuda, K. & Tsukazaki, A. Magnetic Topological Insulators. Nat. Rev. Phys. 1, 126–143 (2019).
[51] Tinkham, M. Introduction to Superconductivity (Courier Corporation, 2004).
[52] Schmidt, V. V. The Physics of Superconductors: Introduction to Fundamentals and Applications (Springer Science & Business Media, 2013).
[53] Alpern, H. et al. Unconventional Superconductivity Induced in Nb Films by Adsorbed Chiral Molecules. New J. Phys. 18, 113048 (2016).
[54] Fetter, A. L. & Hohenberg, P. C. Theory of Type II Superconductors. In Superconductivity, 817–923 (Routledge, 2018).
[55] Kouwenhoven, L. & Glazman, L. Revival of the Kondo Effect. Phys. World 14, 33 (2001).
[56] Thomas, A. L. Phthalocyanine Research and Applications (CRC Press, 1990).
[57] Peksa, L. et al. Primary Vacuum Standard for UHV Rrange—-Standing Experience and Present Problems. Mapan 24, 77–88 (2009).
[58] 伍秀菁, 汪若文. 真空技術與應用 (財團法人國家實驗研究院儀器科技研究中心, 2001). URL https://books.google.com.tw/books?id=f4FTQwAACAAJ.
[59] Binnig, G. & Rohrer, H. Scanning Tunneling Microscopy. Surf. Sci. 126, 236–244 (1983).
[60] Bardeen, J. Tunnelling from a Many-Particle Point of View. Phys. Rev. Lett. 6, 57 (1961).
[61] Chen, C. J. Introduction to Scanning Tunneling Microscopy (Oxford University Press, 2007). URL https://doi.org/10.1093/acprof:oso/9780199211500.001.0001.
[62] Tersoff, J. & Hamann, D. R. Theory of the Scanning Tunneling Microscope. Phys. Rev. B 31, 805 (1985).
[63] Madhavan, V., Chen, W., Jamneala, T., Crommie, M. & Wingreen, N. S. Local Spectroscopy of a Kondo Impurity: Co on Au(111). Phys. Rev. B 64, 165412 (2001).
[64] Hosokawa, K. T., Yuichi & Takashiri, M. Growth of Single-Crystalline Bi2Te3 Hexagonal Nanoplates with and without Single Nanopores during Temperature-Controlled Solvothermal Synthesis. Sci. Rep. 9, 10790 (2019).
[65] Bando, H. et al. The Time-Dependent Process of Oxidation of the Surface of Bi2Te3 Studied by X-ray Photoelectron Spectroscopy. J. Phys.: Condens. Matter 12, 5607 (2000).
[66] Zhang, H. et al. Characterization of Nanocrystalline Bismuth Telluride (Bi2Te3) Synthesized by a Hydrothermal Method. J. Cryst. Growth 265, 558–562 (2004).
[67] Mauser, K. W. et al. Resonant Thermoelectric Nanophotonics. Nat. Nanotechnol. 12, 770–775 (2017).
[68] Concepcion, O. et al. Controlling the Epitaxial Growth of Bi2Te3, BiTe, and Bi4Te3 Pure Phases by Physical Vapor Transport. Inorg. Chem. 57, 10090–10099 (2018).
[69] Yang, Z., Wu, Z., Lyu, Y. & Hao, J. Centimeter-Scale Growth of Two-Dimensional Layered High-Mobility Bismuth Films by Pulsed Laser Deposition. InfoMat. 1, 98–107 (2019).
[70] Ahmad, M., Agarwal, K. & Mehta, B. An Anomalously High Seebeck Coefficient and Power Factor in Ultrathin Bi2Te3 Film: Spin–Orbit Interaction. J. Appl. Phys. 128 (2020).
[71] Kao, Q., Xiao, Y., Jia, Y., Wang, J. & Wang, C. Infrared Photoelectric Detection of Polycrystalline Bi2Te3 Thin Films Prepared by Pulsed Laser Deposition. J. Vac. Sci. Technol. A 42 (2024).