簡易檢索 / 詳目顯示

研究生: 陳晧仁
Chen, Hao-Jen
論文名稱: 利用可撓曲雲母基板製作長壽命燭光有機發光二極體
Long Lifetime Candlelight OLED on Flexible Mica Substrate
指導教授: 周卓煇
Jou, Jwo-Huei
口試委員: 岑尚仁
Chen, Sun-Zen
呂芳賢
Lu, Fang-Hsien
溫世文
Wen, Shih-Wen
蔡永誠
Tsai, Yung-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 68
中文關鍵詞: 雲母可撓有機發光二極體燭光壽命
外文關鍵詞: Mica, Flexible, OLED, Candlelight, Lifetime
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • OLED元件可撓曲的特性,使得OLED產品的設計自由度大幅增加,目前可撓曲OLED元件已廣泛運用在智慧型手機與平板電腦等3C產品上,其在可攜式與造型照明裝置亦具有極大的應用潛力。然而,現今之照明設備多為富含藍光的人造光源,多項研究證明指出,藍光不只會造成夜空汙染,更會導致生態與文物的破壞,甚至會造成人體夜間褪黑激素分泌受到抑制、影響人類的作息節律,進而導致肥胖、糖尿病、癌症等嚴重病症。因此,我們使用不含藍光的類燭光OLED做為生態與生理友善之光源。此外,傳統可撓OLED元件其基板,因不耐水氧而造成壽命不佳,抑或有基板材料成本高昂等缺點。綜觀比較常見的高分子基板(如PET、PC、PI與PEN等)之水氧阻隔性、撓曲性與成本,本研究發現雲母(Mica)基板具有較高的水氧阻隔性、較佳的撓曲性以及較低的成本,適合用以製作長壽命之可撓燭光OLED元件。
    本研究使用雲母ITO基板製作可撓燭光OLED元件,並在無水氧環境下進行封蓋封裝,量測其壽命與光電性。結果顯示,使用雲母基板所製作之燭光OLED元件,其色溫為接近蠟燭色溫之2,090 K;此外,在亮度1,000 cd/m2時,壽命達186小時,為玻璃基板OLED元件壽命(224 小時)之83%。此研究結果顯示雲母具有作為長壽命可撓OLED元件之基板的潛力。


    The flexibility of OLED has greatly increased the design freedom of its products. At present, flexible OLEDs have been widely used in 3C products such as smartphones and tablet computers, which also hold great potential for wearable and decorative lighting devices. However, modern lighting is mostly artificial light sources that are rich in blue light. Many studies have shown that blue light will not only cause night sky pollution, but also damage the ecology and cultural relics. It also suppresses melatonin secretion in human bodies at night, interrupting circadian rhythm and in turn leading to serious diseases such as obesity, diabetes, and cancer. Therefore, we use a candlelight style OLED that does not contain blue light as an ecologically and physiologically friendly light source. In addition, the substrate of traditional flexible OLED is not resistant to water and oxygen, resulting in poor life, or it has disadvantages such as high cost. By comparing the water and oxygen barrier properties, flexibility and cost of commonly used polymer substrates (such as PET, PC, PI, and PEN, etc.), this study found that mica substrates have higher water and oxygen barrier properties, better flexibility and lower cost, suitable for making long-life flexible candlelight OLED devices.
    In this study, the mica ITO substrate was used to fabricate flexible candlelight OLED devices, which were encapsulated in an oxygen- and moisture- free environment, and the lifetime and electroluminescent characteristics were measured. The results show that the color temperature of mica candlelight OLED devices (2,090 K) is close to that of the candle. In addition, at a brightness of 1,000 cd/m2, the lifetime of mica OLED device is 186 hours, which is 83% of the life of glass substrate OLED devices (224 hours). The results demonstrate the potential of mica as a substrate for long-lifetime flexible OLED devices.

    摘要..............................................I Abstract.........................................II 致謝.............................................IV 目錄.............................................IX 表目錄..........................................XII 圖目錄.........................................XIII 壹、緒論..........................................1 貳、文獻回顧......................................3 2-1、OLED之歷史發展...............................3 2-2、燭光OLED元件之發展...........................9 2-3、可撓曲OLED元件之發展........................11 參、理論背景.....................................20 3-1、OLED元件之壽命(LT)計算......................20 3-2、OLED元件效率之計算..........................20 肆、實驗方法.....................................21 4-1、本研究所使用之元件材料.......................21 4-1-1、元件材料之名稱、簡稱與其功能................21 4-1-2、有機材料之化學結構式.......................23 4-2、基板之特性測量分析...........................27 4-2-1、表面粗糙度(Roughness)之量測................27 4-2-2、穿透率(Transmittance)之量測...............27 4-2-3、片電阻(Sheet resistance)之量測............27 4-3、OLED元件之設計與製備方法.....................28 4-3-1、基板之電路設計............................28 4-3-2、元件基板之清潔............................29 4-3-3、OLED元件之發光層製備......................30 4-3-4、熱真空蒸鍍機台之內部腔體與外部抽壓系統......31 4-3-5、蒸鍍之薄膜成膜鍍率測定.....................32 4-3-6、燭光OLED元件之製備........................32 4-4、OLED元件之光電性與壽命量測...................32 4-4-1、元件光電性量測............................32 4-4-2、元件壽命量測..............................34 伍、結果與討論...................................35 5-1、雲母基板與其他可撓基板之比較..................35 5-2、雲母與市售玻璃ITO基板之分析..................40 5-2-1、表面粗糙度分析............................40 5-2-2、導電度分析................................42 5-2-3、穿透率分析................................43 5-3、雲母與玻璃基板之燭光OLED元件比較.............45 5-3-1、燭光OLED元件結構..........................45 5-3-2、元件光電性比較............................46 5-3-3、元件壽命比較..............................55 陸、結論........................................57 柒、參考資料.....................................59 附錄一、個人著作目錄..............................68

    [1] J. D. Bullough, A. Bierman, and M. S. Rea, "Evaluating the blue-light hazard from solid state lighting," International Journal of Occupational Safety and Ergonomics, vol. 25, no. 2, pp. 311-320, 2019/04/03 2019, doi: 10.1080/10803548.2017.1375172.
    [2] J. D. Bullough, "The Blue-Light Hazard: A Review," Journal of the Illuminating Engineering Society, vol. 29, no. 2, pp. 6-14, 2000/07/01 2000, doi: 10.1080/00994480.2000.10748312.
    [3] S. M. J. M. h. Pauley, "Lighting for the human circadian clock: recent research indicates that lighting has become a public health issue," vol. 63, no. 4, pp. 588-596, 2004.
    [4] G. C. Brainard, B. A. Richardson, T. S. King, and R. J. J. B. r. Reiter, "The influence of different light spectra on the suppression of pineal melatonin content in the Syrian hamster," vol. 294, no. 2, pp. 333-339, 1984.
    [5] H. Lim et al., "Flexible Organic Electroluminescent Devices Based on Fluorine‐Containing Colorless Polyimide Substrates," vol. 14, no. 18, pp. 1275-1279, 2002.
    [6] J. Lewis, S. Grego, B. Chalamala, E. Vick, and D. J. A. P. L. Temple, "Highly flexible transparent electrodes for organic light-emitting diode-based displays," vol. 85, no. 16, pp. 3450-3452, 2004.
    [7] J.-H. Jou, OLED Introduction. 2015.
    [8] C. W. Tang and S. A. VanSlyke, "Organic electroluminescent diodes," Applied physics letters, vol. 51, no. 12, pp. 913-915, 1987.
    [9] J. Kido, M. Kimura, and K. Nagai, "Multilayer white light-emitting organic electroluminescent device," Science, vol. 267, no. 5202, pp. 1332-1334, 1995.
    [10] B. W. D'Andrade and S. R. Forrest, "White organic light‐emitting devices for solid‐state lighting," Advanced Materials, vol. 16, no. 18, pp. 1585-1595, 2004.
    [11] S. R. Forrest, "The path to ubiquitous and low-cost organic electronic appliances on plastic," Nature, vol. 428, no. 6986, pp. 911-918, 2004.
    [12] F. So, J. Kido, and P. Burrows, "Organic light-emitting devices for solid-state lighting," MRS bulletin, vol. 33, no. 7, pp. 663-669, 2008.
    [13] J.-H. Jou et al., "Candle Light-Style Organic Light-Emitting Diodes," Advanced Functional Materials, vol. 23, no. 21, pp. 2750-2757, 2013, doi: 10.1002/adfm.201203209.
    [14] R.-P. Xu, Y.-Q. Li, and J.-X. Tang, "Recent advances in flexible organic light-emitting diodes," Journal of Materials Chemistry C, vol. 4, no. 39, pp. 9116-9142, 2016.
    [15] D. W. Jin et al., "Thermal stability and Young's modulus of mechanically exfoliated flexible mica," Current Applied Physics, vol. 18, no. 12, pp. 1486-1491, 2018/12/01/ 2018, doi: https://doi.org/10.1016/j.cap.2018.09.002.
    [16] Y. Bitla and Y.-H. Chu, "MICAtronics: A new platform for flexible X-tronics," FlatChem, vol. 3, pp. 26-42, 2017/06/01/ 2017, doi: https://doi.org/10.1016/j.flatc.2017.06.003.
    [17] Y.-N. Lai, C.-H. Chang, P.-C. Wang, and Y.-H. Chu, "Highly efficient flexible organic light-emitting diodes based on a high-temperature durable mica substrate," Organic Electronics, vol. 75, p. 105442, 2019/12/01/ 2019, doi: https://doi.org/10.1016/j.orgel.2019.105442.
    [18] C. Jia et al., "Highly flexible, robust, stable and high efficiency perovskite solar cells enabled by van der Waals epitaxy on mica substrate," Nano Energy, vol. 60, pp. 476-484, 2019/06/01/ 2019, doi: https://doi.org/10.1016/j.nanoen.2019.03.053.
    [19] B. R. Tak, V. Gupta, A. K. Kapoor, Y.-H. Chu, and R. Singh, "Wearable Gallium Oxide Solar-Blind Photodetectors on Muscovite Mica Having Ultrahigh Photoresponsivity and Detectivity with Added High-Temperature Functionalities," ACS Applied Electronic Materials, vol. 1, no. 11, pp. 2463-2470, 2019/11/26 2019, doi: 10.1021/acsaelm.9b00603.
    [20] A. Bernanose, M. Comte, and P. Vouaux, "Sur un nouveau mode d'émission lumineuse chez certains composés organiques," J. Chim. Phys., vol. 50, pp. 64-68, 1953. [Online]. Available: https://doi.org/10.1051/jcp/1953500064.
    [21] A. Bernanose, "Electroluminescence of organic compounds," British Journal of Applied Physics, vol. 6, no. S4, p. S54, 1955.
    [22] M. Pope, H. Kallmann, and P. J. T. J. o. C. P. Magnante, "Electroluminescence in organic crystals," vol. 38, no. 8, pp. 2042-2043, 1963.
    [23] W. Helfrich and W. Schneider, "Transients of volume‐controlled current and of recombination radiation in anthracene," The Journal of Chemical Physics, vol. 44, no. 8, pp. 2902-2909, 1966.
    [24] W. Helfrich and W. Schneider, "Recombination radiation in anthracene crystals," Physical Review Letters, vol. 14, no. 7, p. 229, 1965.
    [25] P. Vincett, W. Barlow, R. Hann, and G. Roberts, "Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films," Thin solid films, vol. 94, no. 2, pp. 171-183, 1982.
    [26] D. F. Williams and M. Schadt, "A simple organic electroluminescent diode," Proceedings of the IEEE, vol. 58, no. 3, pp. 476-476, 1970, doi: 10.1109/PROC.1970.7655.
    [27] S. A. VanSlyke, C. W. Tang, and L. C. Roberts, "Electroluminescent device with organic luminescent medium," ed: Google Patents, 1988.
    [28] C. Adachi, T. Tsutsui, and S. Saito, "Organic electroluminescent device having a hole conductor as an emitting layer," Applied physics letters, vol. 55, no. 15, pp. 1489-1491, 1989.
    [29] C. W. Tang, S. A. VanSlyke, and C. H. Chen, "Electroluminescence of doped organic thin films," Journal of applied physics, vol. 65, no. 9, pp. 3610-3616, 1989.
    [30] M. Era, C. Adachi, T. Tsutsui, and S. Saito, "Double-heterostructure electroluminescent device with cyanine-dye bimolecular layer as an emitter," Chemical physics letters, vol. 178, no. 5-6, pp. 488-490, 1991.
    [31] L. Hung, C. W. Tang, and M. G. Mason, "Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode," Applied Physics Letters, vol. 70, no. 2, pp. 152-154, 1997.
    [32] M. A. Baldo et al., "Highly efficient phosphorescent emission from organic electroluminescent devices," Nature, vol. 395, no. 6698, pp. 151-154, 1998.
    [33] J.-H. Jou, Y.-S. Chiu, C.-P. Wang, R.-Y. Wang, and H.-C. Hu, "Efficient, color-stable fluorescent white organic light-emitting diodes with single emission layer by vapor deposition from solvent premixed deposition source," Applied Physics Letters, vol. 88, no. 19, p. 193501, 2006.
    [34] Y. Shao and Y. Yang, "White organic light-emitting diodes prepared by a fused organic solid solution method," Applied Physics Letters, vol. 86, no. 7, p. 073510, 2005.
    [35] J.-H. Jou et al., "Sunlight-style color-temperature tunable organic light-emitting diode," vol. 95, no. 1, p. 184, 2009.
    [36] J.-H. Jou et al., "High-efficiency, very-high color rendering white organic light-emitting diode with a high triplet interlayer," vol. 21, no. 46, pp. 18523-18526, 2011.
    [37] J.-H. Jou et al., "Organic light-emitting diode-based plausibly physiologically-friendly low color-temperature night light," vol. 13, no. 8, pp. 1349-1355, 2012.
    [38] J.-H. Jou et al., "OLEDs with chromaticity tunable between dusk-hue and candle-light," vol. 14, no. 1, pp. 47-54, 2013.
    [39] Y. Hu, T. Zhang, J. Chen, D. Ma, and C. H. J. I. J. o. C. Cheng, "Hybrid Organic Light‐Emitting Diodes with Low Color‐Temperature and High Efficiency for Physiologically‐Friendly Night Illumination," vol. 54, no. 7, pp. 979-985, 2014.
    [40] J.-H. Jou et al., "Wet-process feasible candlelight OLED," vol. 4, no. 25, pp. 6070-6077, 2016.
    [41] J. H. Burroughes et al., "Light-emitting diodes based on conjugated polymers," Nature, vol. 347, no. 6293, pp. 539-541, 1990/10/01 1990, doi: 10.1038/347539a0.
    [42] D. Braun and A. J. Heeger, "Visible light emission from semiconducting polymer diodes," Applied Physics Letters, vol. 58, no. 18, pp. 1982-1984, 1991.
    [43] G. Gustafsson, Y. Cao, G. Treacy, F. Klavetter, N. Colaneri, and A. Heeger, "Flexible light-emitting diodes made from soluble conducting polymers," Nature, vol. 357, no. 6378, pp. 477-479, 1992.
    [44] G. Gu, P. Burrows, S. Venkatesh, S. Forrest, and M. Thompson, "Vacuum-deposited, nonpolymeric flexible organic light-emitting devices," Optics letters, vol. 22, no. 3, pp. 172-174, 1997.
    [45] A. N. Krasnov, "High-contrast organic light-emitting diodes on flexible substrates," Applied physics letters, vol. 80, no. 20, pp. 3853-3855, 2002.
    [46] Z. Xie, L.-S. Hung, and F. Zhu, "A flexible top-emitting organic light-emitting diode on steel foil," Chemical physics letters, vol. 381, no. 5-6, pp. 691-696, 2003.
    [47] A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera, and M. Tsuchida, "Flexible OLED displays using plastic substrates," IEEE Journal of selected topics in quantum electronics, vol. 10, no. 1, pp. 107-114, 2004.
    [48] H. H. Yu, S.-J. Hwang, and K.-C. Hwang, "Preparation and characterization of a novel flexible substrate for OLED," Optics communications, vol. 248, no. 1-3, pp. 51-57, 2005.
    [49] J. Greener, K. Ng, K. Vaeth, and T. Smith, "Moisture permeability through multilayered barrier films as applied to flexible OLED display," Journal of applied polymer science, vol. 106, no. 5, pp. 3534-3542, 2007.
    [50] Z. Wang et al., "Unlocking the full potential of organic light-emitting diodes on flexible plastic," Nature Photonics, vol. 5, no. 12, pp. 753-757, 2011.
    [51] S. Kim et al., "Low-Power Flexible Organic Light-Emitting Diode Display Device," Advanced Materials, vol. 23, no. 31, pp. 3511-3516, 2011, doi: https://doi.org/10.1002/adma.201101066.
    [52] S. Ummartyotin, J. Juntaro, M. Sain, and H. Manuspiya, "Development of transparent bacterial cellulose nanocomposite film as substrate for flexible organic light emitting diode (OLED) display," Industrial Crops and Products, vol. 35, no. 1, pp. 92-97, 2012/01/01/ 2012, doi: https://doi.org/10.1016/j.indcrop.2011.06.025.
    [53] S. H. Kim, S. Y. Jeon, P. J. Yoo, L. S. Pu, and J. Y. Lee, "Metal oxide/polymer hybrid nanofiber as flexible moisture absorbent," Fibers and Polymers, vol. 14, no. 12, pp. 1975-1980, 2013/12/01 2013, doi: 10.1007/s12221-013-1975-5.
    [54] A. R. Cho, E. H. Kim, S. Y. Park, and L. S. Park, "Flexible OLED encapsulated with gas barrier film and adhesive gasket," Synthetic Metals, vol. 193, pp. 77-80, 2014/07/01/ 2014, doi: https://doi.org/10.1016/j.synthmet.2014.03.027.
    [55] J. Xie et al., "Epitaxial ultrathin Au films on transparent mica with oxide wetting layer applied to organic light-emitting devices," Applied Physics Letters, vol. 114, no. 8, p. 081902, 2019, doi: 10.1063/1.5082803.

    QR CODE