研究生: |
陳昱廷 Yu-Ting Chen |
---|---|
論文名稱: |
在電源轉換模式下考慮多餘脈衝現象的一個有效率睡眠電晶體喚醒排程 An Efficient Wake-up Schedule during Power Mode Transition Considering Spurious Glitches Phenomenon |
指導教授: |
張世杰
Shih-Chieh Chang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 41 |
中文關鍵詞: | 低功率設計 、漏電流 、睡眠電晶體 、電源轉換模式 、浪湧電流 、喚醒排程 |
外文關鍵詞: | low power, leakage, sleep transistor, power mode transition, surge current, wake-up schedule, power-gating, MTCMOS, DSTN, wake-up time |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在先進製程中,漏電流呈現指數成長,逐漸在整體功率消耗中佔有主要的部份。在降低漏電流的技巧中,功率閘門(power-gating)的技巧是其中最有效的方法之一,在此技巧中,高門檻電壓(high Vth)的睡眠電晶體會和低門檻電壓(low Vth)的邏輯元件會依不同的架構而有不同的擺放方式。在功率閘門的技巧中有兩種運作模式,在活動模式(active mode)下,睡眠電晶體會被打開以維持電路的正常運作;在睡眠模式(sleep mode)下,睡眠電晶體會被關上以減少漏電流的損耗。
當電路由睡眠模式轉換到活動模式時,會有一段時間電路是無法正常運作的,這段時間我們稱為電源轉換模式(power mode transition)。在電源轉換模式下,由於睡眠電晶體的開啟,一個很大的放電電流,我們稱之為浪湧電流(surge current)會產生,過大的浪湧電流會造成雜訊,並導致電源閘極設計產生錯誤。其中一個有效控制此浪湧電流的方法是針對睡眠電晶體的開啟順序作排程。在這篇論文中,我們介紹了許多關於浪湧電流的重要特性。這些特性是針對在分散式睡眠電晶體網路(Distributed Sleep Transistor Network)這種架構上,此架構在工業界被廣為使用。根據這些特性,我們提出精確的浪湧電流估算,並提供一個有效率的排程在分散式睡眠電晶體網路上。根據實驗數據顯示,我們的結果和前人相比有非常顯著的進步。平均而言,在電源轉換模式下,我們的結果可減少366倍的喚醒時間,並降低39.76%的能量耗損。
During the power mode transition, a large surge current may lead to the malfunctions in a power-gating design. One efficient way to control the surge current is to schedule the turn-on sequences of sleep transistors. In this paper, we introduce several important properties of the surge current during the power mode transition for the Distributed Sleep Transistor Network (DSTN) designs, which is a popular power gating design style. Based on these properties, we propose an accurate estimation of surge current and provide an efficient schedule on the DSTN structure. Our experiment achieved significantly better results than previous works—on average, 366 times wake-up time reduction and 39.76% less energy loss during the power mode transition.
[1] A. Abdollahi, F. Fallah, and M. Pedram, “A Robust Power Gating Structure and Power Mode Transition Strategy for MTCMOS Design,” IEEE Transaction on VLSI systems, vol. 15, no. 1, Jan 2007.
[2] A. Abdollahi, F. Fallah, and M. Pedram, “Leakage current reduction CMOS VLSI circuits by input vector control,” IEEE Transaction on VLSI systems, vol. 12, no. 2, pp. 140-154, Feb. 2004.
[3] M. Anis, S. Areibi, M. Mahmoud, and M. Elmasry , “Dynamic and Leakage Power Reduction in MTCMOS Circuits Using an Automated Efficient Gate Clustering Technique,” Proc. of the DAC, pp. 480-485, 2002.
[4] M. L. Bushnell, and V. D. Agrawal, Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits, Lucent Technologies and Michael L. Bushnell, 2000.
[5] H. Chang and S. S. Sapatnekar, “Full-Chip Analysis of Leakage Power Under Process Variations, Including Spatial Correlations,” Proc. of the DAC, pp. 523-528, 2005.
[6] D. S. Chiou, S. H. Chen, S. C. Chang, and C. Yeh, “Timing Driven Power Gating,” Proc. of the DAC, pp. 121-124, 2006.
[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms - Second Edition, The MIT Press, 2001.
[8] H. Jiang, M. M. Sadowska, and S. R. Nassif, “Benefits and Costs of Power-Gating Technique,” Proc. of the ICCD, pp. 559-566, 2005.
[9] S. Kim, S. V. Kosonocky, and D. R. Knebel, “Understanding and Minimizing Ground Bounce During Mode Transition of Power Gating Structures,” Proc. of the ISLPED , Aug, 2003.
[10] F. Li, L. He, and K. Saluja, “Estimation of Maximum Power-up Current,” Proc. of the ASP-DAC, pp. 51-56, 2002.
[11] F. Li, and L. He, “Maximum Current Estimation Considering Power Gating,” Proc. of the ISPD, pp 106-111, Apr, 2001.
[12] C. Long, and L. He, “Distributed Sleep Transistor Network for Power Reduction,” IEEE Transaction on VLSI systems, vol. 12, no. 9, Sep. 2004.
[13] C. Long, J. Xiong, and L. He, “On Optimal Physical Synthesis of Sleep Transistors,” Proc. of the ISPD, pp. 156-161, 2004.
[14] S. Mutoh, S. Shigematsu, Y. Matsuya, H. Fukuda, T. Kaneko, and J. Yamada, “A 1-V Multithreshold-Voltage CMOS Digital Signal Processor for Mobile Phone Application,” IEEE JSSC, vol. 31, no. 11, Nov. 1996.
[15] R. R. Rao, A. Devgan, D. Blaauw, and D. Sylvester, “Parametric Yield Estimation Considering Leakage Variablity,” Proc. of the DAC, pp. 442-447, 2004.
[16] K. Roy, S. Mukhopadhyay and H. M. Meimand, “Leakage Current Mechanisms and Leakage Reduction Techniques in Deep-Submicrometer CMOS Circuits,” Proc. of the IEEE, Feb. 2003.
[17] A. Sagahyroon, and F. Aloul, “Maximum Power-Up Current Estimation in Combinational CMOS Circuits,” Proc. of the IEEE MELECON, May 16-19, 2006.
[18] K. Shi, and D. Howard, “Sleep Transistor Design and Implementation - Simple Concepts Yet Challenges To Be Optimum,” Proc. of the VLSI-DAT, pp. 1-4, 2006.
[19] K. Shi, and D. Howard, “Challenges in Sleep Transistor Design and Implementation in Low-Power Designs,” Proc. of the DAC, pp. 113-116, 2006.
[20] J. P. Uyemura, Introduction to VLSI Circuits and Systems, Jonh Wiley & Sons, Inc, 2002.
[21] Synosys Inc. NanoSim® User Guide, Version-X 2005, 9.