研究生: |
程麒任 Cheng, Qi-Ren. |
---|---|
論文名稱: |
生態系區塊抽樣之功能多樣性(統計估計與軟體開發) Statistical Estimation and Software Development of Ecosystem Functional Diversity in Quadrat Sampling |
指導教授: |
趙蓮菊
Chao, Lien-Ju. |
口試委員: |
林宜靜
Lin, Yi-Ching 邱春火 Chiu, Chun-Huo 謝叔蓉 Shieh, Shwu-Rong |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 統計學研究所 Institute of Statistics |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 279 |
中文關鍵詞: | 功能多樣性 、功能相異性 、區塊抽樣 、軟體開發 |
外文關鍵詞: | functional diversity, functional dissimilarity, quadrat sampling, software development |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
功能多樣性 (或特徵多樣性) 是生態學中一個快速發展的研究議題,意指物種特徵的值或範圍的多樣性,對評估生態系統及反應環境壓力或干擾是至關重要的。若功能多樣性愈高,則代表物種間的特徵相異性愈高,整體生態系統更能適應環境的變化,一般而言,我們使用物種豐富度和物種間的特徵值來量化功能多樣性。在文獻中,有許多的功能多樣性量化指標被提出。
本篇論文的研究主題分為兩部分,第一部分探討在單一群落下,將Chao等人 (2018) 提出的應用於豐富度資料的功能多樣性指標,衍生至區塊抽樣下,此方法是根據以位階 與「差異門檻」表示的屬性多樣性 (Hill 指標的衍生) 所推導。針對區塊抽樣下的功能多樣性指標,本文提出適宜的統計估計並且利用拔靴方法估計其變異數。第二部分探討在個體抽樣與區塊抽樣下,多群落功能多樣性指標的分解並利用統計推論估計之,再透過轉換至功能相異(相似)性指標。為比較本文提出之估計量與傳統最大概似估計量,本文藉由電腦模擬驗證所提出之估計量在偏差與均方根差表現均較佳。最後,透過實際資料比較本文提出之功能多樣性指標與功能相異(相似)性指標,並利用R語言與shiny套件發展互動式網頁FunD,將成果一併顯現。
Functional diversity or trait diversity refers to the diversity of the value and range of species traits, and is a rapidly growing research topic in ecology. Functional diversity is essential to assess ecosystem processes and their responses to environmental stress or disturbance. The higher value the functional diversity is, the more dissimilar the characteristics among species are, and as a result the whole ecosystem can better adapt to environmental changes. Functional diversity is typically quantified by using species abundances and species trait values. Many functional diversity measures have been proposed in the literature.
The thesis includes two parts. The first part focuses on modifying Chao et al. (2018) abundance-based functional diversity measures to replicated incidence-based data under quadrat sampling for a single ecosystem. The proposed measures and estimators are formulated based on attribute diversity (a generalization of Hill numbers) in terms of diversity order q 0 and any positive level of threshold of functional distinctiveness. Statistical estimators of the proposed incidence-based measures are proposed and their variances are estimated by a bootstrap method. The second part focuses on the functional diversity decomposition and estimation under multiple communities for both individual-based abundance data and incidence data. Functional (dis)similarity indices are derived as transformations of functional beta diversities. Simulation results are presented to compare the proposed estimators with the conventional empirical diversities; the proposed estimators exhibit substantial improvement in terms of bias and RMSE. Real data sets are used to illustrate the proposed functional diversity measures and related functional dissimilarity indices. To facilitate all computations, online software “FunD” is developed with R language and Shiny package.
[1] Chao, A. and Jost, L. (2012) . Coverage-based rarefaction: standardizing samples by completeness rather than by size. Ecology, 93, 2533-2547.
[2] Chao, A., Wang, Y. T. and Jost, L. (2013) . Entropy and the species accumulation curve: a novel estimator of entropy via discovery rates of new species. Methods in Ecology and Evolution, 4, 1091-1110.
[3] Chao, A., Chiu, C.-H. and Jost, L. (2014a) . Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity/differentiation measures through Hill numbers. Annual Reviews of Ecology, Evolution, and Systematics, 45, 297-324.
[4] Chao, A., Gotelli, N. G., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K. and Ellison, A. M. (2014b) . Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species biodiversity studies. Ecological Monographs, 84, 45-67.
[5] Chiu, C.-H., Jost, L. and Chao, A. (2014) . Phylogenetic beta diversity, similarity, and differentiation measures based on Hill numbers. Ecological Monographs, 84, 21-44.
[6] Chao, A., Chiu, C.-H., Hsieh, T. C., Davis, T., Nipperess, D. and Faith, D. (2015) Rarefaction and extrapolation of phylogenetic diversity. Methods in Ecology and Evolution, 6, 380-388.
[7] Chao, A. and Jost, L. (2015) . Estimating diversity and entropy profiles via discovery rates of new species. Methods in Ecology and Evolution, 6, 873-882.
[8] Chao, A. (2016) . Quantifying sample completeness of a biological survey: a generalization of Good-Turing’s concept of sample coverage. Under preparation.
[9] Chao, A., Chiu, C.-H., Colwell, R. K., Magnago, L. F. S., Chazdon, R. L. and Gotelli, N. J. (2017) . Deciphering the enigma of undetected species, phylogenetic, and functional diversity based on Good-Turing theory. Ecology, 98, 2914-2929.
[10] Chao, A., Chiu, C.-H., Villéger, S., Sun, I.-F., Thorn, S., Lin, Y.-C., Chiang, J. M. and Sherwin, W. B. (2018) . An attribute-diversity approach to functional diversity, functional beta diversity, and related (dis) similarity measures. Under preparation.
[11] Chiu, C. H. and Chao, A. (2014) . Distance-based functional diversity measures and their decomposition: a framework based on Hill numbers. PloS one, 9, e100014.
[12] Chiu, C. H., Wang, Y. T., Walther, B. A. and Chao, A. (2014) . An improved non-parametric lower bound of species richness via the Good-Turing frequency formulas. Biometrics, 70, 671-682.
[13] Magnago, L. F. S., Edwards, D. P., Edwards, F. A., Magrach, A., Martins, S. V. and Laurance, W. F. (2014) . Functional attributes change but functional richness is unchanged after fragmentation of Brazilian Atlantic forests. Journal of Ecology, 102, 475-485.
[14] Pielou, E. C. (1975) . Ecology Diversity. J. Wiley and Sons, New York.
[15] Simpson, E. H. (1949) . Measurement of diversity. Nature, 163, 688-688.
[16] Walker B, Kinzig A and Langridge J (1999) . Plant attribute diversity, resilience, and ecosystem function: The nature and significance of dominant and minor species. Ecosystems 2: 95–113.
[17] 趙蓮菊, 邱春火, 王怡婷, 謝宗震, 馬光輝 (2013) . 仰觀宇宙之大, 俯察品類之盛:如何量化生物多樣性. Journal of the Chinese Statistical Association, 51, 8-53.
[18] 陳禹含 (2015) . 區塊抽樣之兩群落γ 熵指標估計 趙蓮菊指導 新竹市國立清華大學統計學研究所碩士論文
[19] 許曉雯 (2016) . 功能多樣性曲面估計與軟體開發 趙蓮菊指導 新竹市國立清華大學統計學研究所碩士論文
[20] 賴彥儒 (2017) . 物種特質功能多樣性之統計估計:應用至台灣森林動態樣區分析 趙蓮菊指導 新竹市國立清華大學統計學研究所碩士論文