簡易檢索 / 詳目顯示

研究生: 陳逸翔
Yi-Hsiang Chen
論文名稱: A Mg(OH)2 preconcentration/matrix reduction method for the determination of rare earth elements in environmental water sample by laser ablation inductively coupled plasma mass spectrometry
以Mg(OH)2共沉澱法結合LA-ICP-MS分析環境樣品中的稀土元素
指導教授: 王竹方
Chu-Fang Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 68
中文關鍵詞: 氫氧化鎂微量金屬稀土元素雷射剝蝕雷射剝蝕感應耦合電漿質譜儀
外文關鍵詞: Mg(OH)2, Rare earth elements, Trace elements, LA-ICP-MS
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Abstract
    Laser ablation is most frequently applied to the analysis of solid sample. A combination of laser ablation (LA) with inductively coupled plasma mass spectrometry (ICP-MS) is one of the most powerful analytical techniques. LA-ICP-MS is advantageous because of its direct solid sampling capability, high sensitivity, fast analysis, microanalysis, and depth profiling capabilities. In this study, it was to evaluate the determination of rare earth elements as well as trace elements in water samples based on preconcentration with magnesium hydroxide prior to their determination by LA-ICP-MS. Dried microdroplets of sample, as well as standard solution previously mixed with methylene blue (MB), were prepared on a PTFE filter and ablated by LA-ICP-MS. MB was used as a matrix modifier to enhance the sample transport efficiency in LA-ICP-MS. Another advantage of MB toward this experiment is the absorption ability of UV light at 213nm. The influences of various analytical parameters for the quantitative recoveries of REEs, such as type of Mg carriers, quantity of Mg(OH)2 precipitated, pH effect, reaction time, absorption efficiencies of Mg(NO3)2, Ba2+ removal efficiency and repetitive co-precipitation process have been thoroughly investigated. Both the external standard and internal standard were applied for quantification by LA-ICP-MS. A good precision (RSD<10%) and high recovery (95~105%) result can be obtained in this research. The high correlation coefficients (0.998~0.999) and low detection limits for most elements of interest showed that this method would be useful for future quantification in any kind of liquid samples. The proposed method was applied to real environmental samples, such as bottled water, tap water, swimming pool water, lake water and simulated seawater.


    摘要
    雷射剝蝕技術常應用於固體樣品分析,雷射剝蝕結合感應耦合電漿質譜儀(LA-ICP-MS)為一極具發展潛力的分析技術。LA-ICP-MS的優點包括:可以直接分析固體樣品、具有高靈敏度、樣品分析速度快、可進行微區分析和縱深分析。本研究利用結合氫氧化鎂前處理方法與LA-ICP-MS的技術,分析水樣中的稀土元素和微量元素。將液體樣品預先與亞甲基藍(Methylene blue)混合,定體積的樣品滴於鐵氟龍濾紙上,並將其乾燥後,以LA-ICP-MS進行定量分析。亞甲基藍可當作基質修飾劑並增加樣品傳輸到LA-ICP-MS的速率,另一個優點是可以在213 nm吸收UV光而當作顯示劑。在氫氧化鎂前處的方法中,探討參數的最佳化,包含鎂化合物的選擇、鎂離子的沉澱量、酸鹼度影響、反應時間、吸附能力、干擾的去除和重複沉澱實驗等。研究過程中將利用外標法和內標法來達到LA-ICP-MS定量分析研究的準確性。研究結果顯示,此方法可以得到很好的精密度 (RSD <10%) 和高的回收率 (95~105%),且具有很高的檢量線線性相關係數(0.998~ 0.999)和很低的偵測極限,因此可以應用於任何液體樣品的定量分析。本研究亦針對真實環境樣品進行採樣分析,包括瓶裝水、自來水、游泳池水、湖水和模擬海水,實驗結果顯示,此方法具有極高的可信度。

    Content Index 中文摘要........................................................................................................................I Abstract……………………………………………………………….……….……II 謝誌………………………………………………………………………………….III Content Index.............................................................................................................IV Table Index................................................................................................................VII Figure Index............................................................................................................VIII Chapter 1 Introduction……………………………………………………………...1 1.1 General overview……………………………………………………...1 1.2 Aims of this study……………………………………………………….3 Chapter 2 Literature review…………………………………………………………4 2.1 Rare earth elements……………………………………………………4 2.1.1 Introduction of REEs…………………………………………….4 2.1.2 Importance of REEs………………………………………………5 2.1.3 The preconcentration method for REEs analysis………………6 2.2 Mg(OH)2 preconcentration method…………………………………..8 2.3 Instrument……………………………………………………………….9 2.3.1 Development and application of ICP-MS…………………..……9 2.3.2 Development and application of LA-ICP-MS…………………..11 2.4 Interference…………………………………………………………..14 Chapter 3 Experimental design……………………………………………...…….17 3.1 Apparatus………………………………………………………….…17 3.2 Principle of LA-ICP-MS……………………………………………..18 3.2.1 Laser ablation system……………………………………...…….18 3.2.2 Inductively coupled plasma………………………………...……18 3.2.3 Quadrupole mass analyzer…………………………………..….20 3.2.4 Ion detector………………………………………………………21 3.3 Reagent and Material……………………………………………...….22 3.4 Experimental procedure……………………………………………...24 3.4.1 Flowchart of experimental design…………………………...…..24 3.4.2 External calibration method (matrix matched standard solution curve)……………………………………………………………26 3.4.3 Mg(OH)2 preconcentration procedure……………………...…27 3.4.4 Sample preparation for liquid Sample……………………….28 3.4.5 Sample preparation for Ba2+ riched sample…………………..29 3.4.6 Sample peparation for simulated seawater and lake water….29 Chapter 4 Results and discussion…………………………………………………31 4.1 LA-ICP-MS analysis………………………………………………..31 4.1.1 Optimization of instrumental parameters…………………….31 4.1.2 Quality control…………………………………………………..36 4.1.2.1 Calibration strategies in LA-ICP-MS……………………..36 4.1.2.2 Limit of detection(LOD), pecision and accuracy………..39 4.2 Optimization of preconcentration condition……………………….43 4.2.1 Type of magnesium carriers……………………………………..43 4.2.2 Influences of magnesium amounts………………………………44 4.2.3 Effects of pH…………………………………………………….46 4.2.4 Adsorption efficiencies of Mg(NO3)2 on REEs solution………..49 4.2.5 Ba2+ removal efficiency………………………………………….50 4.2.6 Repetitive co-precipitation………………………………………52 4.3 Real sample analysis ………………………………………………...56 4.3.1 Analysis of simulated seawater and lake water by LA-ICP-MS.56 4.3.2 Real samples analysis by LA-ICP-MS and conventional ICP-MS............................................................................................57 4.4 Comparison of conventional and novel method...…………………...61 Chapter 5 Conclusions and future directions..........................................................62 5.1 Conclusions ............................................................................................62 5.2 Future directions....................................................................................63 Reference.....................................................................................................................64

    Ammann, A. A. (2007). "Inductively coupled plasma mass spectrometry (ICP MS): a versatile tool." Journal of mass spectrometry 42: 419-427.
    Bahramifar, N. and Y. Yamini (2005). "On-line preconcentration of some rare earth elements in water samples using C-18-cartridge modified with 1-(2-pyridylazo) 2-naphtol (PAN) prior to simultaneous determination by inductively coupled plasma optical emission spectrometry (ICP-OES)." Analytica Chimica Acta 540(2): 325-332.
    Bau, M., P. Dulski, et al. (1995). "Yttrium and Holmium in South-Pacific Seawater - Vertical-Distribution and Possible Fractionation Mechanisms." Chemie Der Erde-Geochemistry 55(1): 1-16.
    Becker, J. S., C. Pickhardt, et al. (2004). "Determination of Ag, Tl, and Pb in few milligrams of platinum nanoclusters by on-line isotope dilution in laser ablation inductively coupled plasma mass spectrometry." International Journal of Mass Spectrometry 237(1): 13-17.
    Boulyga, S. F., D. Desideri, et al. (2003). "Plutonium and americium determination in mosses by laser ablation ICP-MS combined with isotope dilution technique." International Journal of Mass Spectrometry 226(3): 329-339.
    Chen, Z., M. Megharaj, et al. (2007). "Removal of interferences in the speciation of chromium using an octopole reaction system in ion chromatography with inductively coupled plasma mass spectrometry." Talanta 73: 948-952.
    Dreisewerd, K., F. Draude, et al. (2007). "Molecular Analysis of Native Tissue and Whole Oils by Infrared Laser Mass Spectrometry." Analytical Chemistry 79: 4514-4520.
    Ferguson, J. W. and R. S. Houk (2006). "High resolution studies of the origins of polyatomic ions in inductively coupled plasma-mass spectrometry, Part I. Identification methods and effects of neutral gas density assumptions, extraction voltage, and cone material." Spectrochimica Acta Part B 61: 905-915.
    Forsgard, N., P. S. berg, et al. (2007). "Screening and identification of aluminium-containing biomolecules by column-switched LC-ICP-MS and LC-ESI-MS/MS." Journal of Analytical Atomic Spectrometry 22: 1397-1402.
    Gastel, M., U. Breuer, et al. (1997). "Depth profile analysis of thin film solar cells using SNMS and SIMS." Fresenius Journal of Analytical Chemistry 358(1-2): 207-210.
    Guillong, M. and C. A. Heinrich (2007). "Sensitivity enhancement in laser ablation ICP-MS using small amounts of hydrogen in the carrier gas." Journal of Analytical Atomic Spectrometry 22: 1488-1494.
    Halicz, L. and D. G. nther (2004 ). "Quantitative analysis of silicates using LA-ICP-MS with liquid calibration." Journal of Analytical Atomic Spectrometry 19: 1539-1545.
    Hirata, S., Y. Ishida, et al. (2001). "Determination of trace metals in seawater by on-line column preconcentration inductively coupled plasma mass spectrometry." Analytica Chimica Acta 438(1-2): 205-214.
    Houk, R. S. (1986). "Mass-Spectrometry of Inductively Coupled Plasmas." Analytical Chemistry 58(1): A97-&.
    Inagaki, K., T. Narukawa, et al. (2007). "Determination of cadmium in grains by isotope dilution ICP-MS and coprecipitation using sample constituents as carrier precipitants." Analytical and Bioanalytical Chemistry 389(3): 691-696.
    Jarvis, K. E., J. G. Williams, et al. (1996). "Determination of trace and ultra-trace elements in saline waters by inductively coupled plasma mass spectrometry after off-line chromatographic separation and preconcentration." Journal of Analytical Atomic Spectrometry 11(10): 917-922.
    Kajiya, T., M. Aihara, et al. (2004). "Determination of rare earth elements in seawater by inductively coupled plasma mass spectrometry with on-line column pre-concentration using 8-quinolinole-immobilized fluorinated metal alkoxide glass." Spectrochimica Acta Part B-Atomic Spectroscopy 59(4): 543-550.
    Khatib-Shahidi, S., M. Andersson, et al. (2006). "Direct Molecular Analysis of Whole-Body Animal Tissue Sections by Imaging MALDI Mass Spectrometry." Analytical Chemistry 78: 6448-6456.
    Kuhn, M. and M. Kriews (2000). "Improved detection of transition and rare earth elements in marine samples with the CETAC DSX-100 preconcentration/matrix elimination system and ICP-MS." Fresenius Journal of Analytical Chemistry 367(5): 440-444.
    Lead, J. R., J. Hamilton-Taylor, et al. (1998). "Europium binding by fulvic acids." Analytica Chimica Acta 369(1-2): 171-180.
    Lee, Y. L., C. C. Chang, et al. (2003). "Laser ablation inductively coupled plasma mass spectrometry for the determination of trace elements in soil." Spectrochimica Acta Part B-Atomic Spectroscopy 58(3): 523-530.
    Liang, P., Y. Liu, et al. (2005). "Determination of trace rare earth elements by inductively coupled plasma atomic emission spectrometry after preconcentration with multiwalled carbon nanotubes." Spectrochimica Acta Part B-Atomic Spectroscopy 60(1): 125-129.
    Lin, S. M., C. L. Tseng, et al. (1987). "Determination of Major, Minor and Trace-Elements in Urinary Stones by Neutron-Activation Analysis." Applied Radiation and Isotopes 38(8): 635-639.
    Pearson, N. J., O. Alard, et al. (2002). "In situ measurement of Re-Os isotopes in mantle sulfides by laser ablation multicollector-inductively coupled plasma mass spectrometry: Analytical methods and preliminary results." Geochimica Et Cosmochimica Acta 66(6): 1037-1050.
    Piepgras, D. J. and S. B. Jacobsen (1992). "The Behavior of Rare-Earth Elements in Seawater - Precise Determination of Variations in the North Pacific Water Column." Geochimica Et Cosmochimica Acta 56(5): 1851-1862.
    Rahmi, D., Y. Zhu, et al. (2007). "Multielement determination of trace metals in seawater by ICP-MS with aid of down-sized chelating resin-packed minicolumn for preconcentration." Talanta 72(2): 600-606.
    Russo, R. E., X. L. Mao, et al. (2002). "Laser ablation in analytical chemistry - a review." Talanta 57(3): 425-451.
    Shabani, M. B., T. Akagi, et al. (1990). "Determination of Trace Lanthanides and Yttrium in Seawater by Inductively Coupled Plasma Mass-Spectrometry after Preconcentration with Solvent-Extraction and Back-Extraction." Analytical Chemistry 62(24): 2709-2714.
    Shaw, T. J., T. Duncan, et al. (2003). "A preconcentration/matrix reduction method for the analysis of rare earth elements in seawater and groundwaters by isotope dilution ICPMS." Analytical Chemistry 75(14): 3396-3403.
    Takahashi, Y., A. Tada, et al. (2004). "Distribution pattern of rare earth ions between water and montmorillonite and its relation to the sorbed species of the ions." Analytical Sciences 20(9): 1301-1306.
    Tan, S. H. and G. Horlick (1986). "Background Spectral Features in Inductively Coupled Plasma Mass-Spectrometry." Applied Spectroscopy 40(4): 445-460.
    Vaeck, L. V., K. Poels, et al. (1997). "Laser microprobe mass spectrometry : principle and applications in biology and medicine." Cell Biology International 21: 634-648.
    Vanderpool, R. A. and W. T. Buckley (1999). "Liquid-Liquid Extraction of Cadmium by Sodium Diethyldithiocarbamate from Biological Matrixes for Isotope Dilution Inductively Coupled Plasma Mass Spectrometry." Analytical Chemistry 71: 652-659.
    Willie, S. N. and R. E. Sturgeon (2001). "Determination of transition and rare earth elements in seawater by flow injection inductively coupled plasma time-of-flight mass spectrometry." Spectrochimica Acta Part B-Atomic Spectroscopy 56(9): 1707-1716.
    Xinde Cao, G. Z. e. a. (1998). "Determination of ultratrace rare earth elements in tea by inductively coupled plasma mass spectrometry with microwave digestion and AG50W-x8 cation exchange chromatography." Analyst 123: 1115-1119.
    Zhang, J. and Y. Nozaki (1998). "Behavior of rare earth elements in seawater at the ocean margin: A study along the slopes of the Sagami and Nankai troughs near Japan." Geochimica Et Cosmochimica Acta 62(8): 1307-1317.
    Zoriy, M. V., A. Kayser, et al. (2005). "Determination of uranium isotopic ratios in biological samples using laser ablation inductively coupled plasma double focusing sector field mass spectrometry with cooled ablation chamber." International Journal of Mass Spectrometry 242(2-3): 297-302.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE