研究生: |
米蘭諾 Melanio Pech Jr. |
---|---|
論文名稱: |
利用具鄰居影響的粒子群聚方法來解決最小能量損失的最佳能源派遣問題 Optimal Dispatch with Minimal Power Transmission Loss Using a Novel Neighbor-Influenced Particle Swarm |
指導教授: |
蘇豐文
Soo, Von-Wun |
口試委員: |
周志遠
Chou, Jerry 蔡孟伸 Tsai, Men-Shen |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊系統與應用研究所 Institute of Information Systems and Applications |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 65 |
中文關鍵詞: | 粒子群優化 、優化最佳能源派遣 、電力系統 |
外文關鍵詞: | particle swarm optimization, optimal economic dispatch, electric power system |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
粒子群優化是模擬動物個體合作行為的一種進化式智慧型演算法用來解決找尋最佳解的問題。其演算法主要利用每一個粒子依據其之前的經驗法則在所要解決的問題範圍內不斷的自我移動並搜尋。傳統的粒子群優化方式缺乏考慮於局部空間中粒子與粒子的互動與經驗法則交流,因此我們利用每個粒子其周圍的粒子來改善粒子群優化的演算法。此篇論文把改善後的粒子群優化方法利用在電力網路中經濟調度的問題藉以達成電力供給與需求的平衡。從實驗結果得知我們改善後的粒子群優化方式成功的找尋到問題的最佳解並且降低計算量,此一成果將可以進一步運用於大型且非線性的複雜問題。
關鍵字: 粒子群,優化最佳能源派遣, 電力系統
As a swarm intelligent technique, particle swam optimization (PSO) is inherently an evolutionary algorithm that simulates the animal collective behaviors. Since each individual has a different experience based on its position, each particle produces its own movement based on these experiences. The original PSO lacks deeper interaction between individuals at a local level. This implementation of PSO will explore the influence that individuals in its neighborhood have on its search and how it can improve on the capabilities of PSO. Therefore, in this study, a variation will be added to the current PSO technique and applied to Economic Dispatch (ED) problem.
ED is an integral component in planning and operation of power systems, because it results in the most cost-efficient method of power delivery while serving the demand. In solving ED there are also other considerations such as power loss that play a large role in cost. More recently, evolutionary algorithms have replaced conventional methods of solving these power system problems. They require less computation and are also very useful in large non-linear problems.
1. Carlisle, A. and G. Dozier. An Off-The-Shelf {PSO}. in {PSO} Workshop. 2001.
2. Jaini, A., et al. Particle swarm optimization (PSO) technique in economic power dispatch problems. in Power Engineering and Optimization Conference (PEOCO), 2010 4th International. 2010.
3. Kennedy, J. and R. Eberhart, Particle swarm optimization. 1995 Ieee International Conference on Neural Networks Proceedings, Vols 1-6, 1995: p. 1942-1948.
4. Jiao, G.H., Z.H. Cui, and J.C. Zeng, Particle Swarm Optimization with Individual Decision. Proceedings of the 8th Ieee International Conference on Cognitive Informatics, 2009: p. 514-520.
5. Hassan, R., et al., A comparison of particle swarm optimization and the genetic algorithm. Proceedings of the 1st AIAA Multidisciplinary Design Optimization Specialist Conference, 2005.
6. del Valle, Y., et al., Particle swarm optimization: Basic concepts, variants and applications in power systems. Ieee Transactions on Evolutionary Computation, 2008. 12(2): p. 171-195.
7. Shi, Y.H. and R. Eberhart, A modified particle swarm optimizer. 1998 Ieee International Conference on Evolutionary Computation - Proceedings, 1998: p. 69-73.
8. Eberhart, R.C. and Y.H. Shi, Particle swarm optimization: Developments, applications and resources. Proceedings of the 2001 Congress on Evolutionary Computation, Vols 1 and 2, 2001: p. 81-86.
9. Bratton, D. and J. Kennedy, Defining a standard for particle swarm optimization. 2007 IEEE Swarm Intelligence Symposium, 2007: p. 120-127.
10. Clerc, M. and J. Kennedy, The particle swarm - Explosion, stability, and convergence in a multidimensional complex space. Ieee Transactions on Evolutionary Computation, 2002. 6(1): p. 58-73.
11. Kwok, N.M., et al., An empirical study on the settings of control coefficients in Particle Swarm Optimization. 2006 Ieee Congress on Evolutionary Computation, Vols 1-6, 2006: p. 823-830.
12. Richards, M. and D. Ventura, Choosing a starting configuration for particle swarm optimization. 2004 Ieee International Joint Conference on Neural Networks, Vols 1-4, Proceedings, 2004: p. 2309-2312.
13. Eberhart, R., Y.H. Shi, and J. Kennedy, Swarm Intelligence. 1 ed. The Morgan Kaufmann Series in Evolutionary Computation2001 Morgan Kaufmann Publishers.
14. Rini, D.P., S.M. Shamsuddin, and S.S. Yuhaniz, Particle Swarm Optimization: Technique, System and Challenges. International Journal of Computer Applications (0975 – 8887), 2011. 14(1): p. 9.
15. Kennedy, J. and R.C. Eberhart, A discrete binary version of the particle swarm algorithm. Smc '97 Conference Proceedings - 1997 Ieee International Conference on Systems, Man, and Cybernetics, Vols 1-5, 1997: p. 4104-4108.
16. Angeline, P.J., Using selection to improve particle swarm optimization. 1998 Ieee International Conference on Evolutionary Computation - Proceedings, 1998: p. 84-89.
17. Higashi, N. and H. Iba, Particle swarm optimization with Gaussian mutation. Proceedings of the 2003 Ieee Swarm Intelligence Symposium (Sis 03), 2003: p. 72-79.
18. Liu, H.B. and A. Abraham, An hybrid fuzzy variable neighborhood particle swarm optimization algorithm for solving quadratic assignment problems. Journal of Universal Computer Science, 2007. 13(9): p. 1309-1331.
19. Karpat, Y. and T. Ozel, Multi-objective optimization or turning processes using neural network modeling and dynamic-neighborhood particle swarm optimization. International Journal of Advanced Manufacturing Technology, 2007. 35(3-4): p. 234-247.
20. Jingyu, Q., Y. Jian, and Z. Duanning. An Adaptive Repulsive Particle Swarm Optimization for Makespan and Maximum Lateness Minimization in the Permutation Flowshop Scheduling Problem. in Intelligent Systems and Applications, 2009. ISA 2009. International Workshop on. 2009.
21. Blackwell, T.M. and P. Bentley. Don't push me! Collision-avoiding swarms. in Evolutionary Computation, 2002. CEC '02. Proceedings of the 2002 Congress on. 2002.
22. Neyestani, M., M.M. Farsangi, and H. Nezamabadi-Pour, A modified particle swarm optimization for economic dispatch with non-smooth cost functions. Engineering Applications of Artificial Intelligence, 2010. 23(7): p. 1121-1126.
23. Park, J.B., et al., A particle swarm optimization for economic dispatch with nonsmooth cost functions. Ieee Transactions on Power Systems, 2005. 20(1): p. 34-42.
24. Coelho, L.d.S. and C.-S. Lee, Solving economic load dispatch problems in power systems using chaotic and Gaussian particle swarm optimization approaches. International Journal of Electrical Power & Energy Systems, 2008. 30(5): p. 297-307.
25. El-Gallad, A., et al. Particle swarm optimizer for constrained economic dispatch with prohibited operating zones. in Electrical and Computer Engineering, 2002. IEEE CCECE 2002. Canadian Conference on. 2002.
26. Coelho, L.D. and V.C. Mariani, Economic dispatch optimization using hybrid chaotic particle swarm optimizer. 2007 Ieee International Conference on Systems, Man and Cybernetics, Vols 1-8, 2007: p. 3428-3433.
27. Elgerd, O., I., Electric Energy Systems Theory: An Introduction. 2nd Ed. ed. McGraw-Hill series in electrical engineering. Power and energy: McGraw-Hill Book Company. 533.
28. Wood, A.J., Power generation, operation, and control. 2nd ed1996: New York : J. Wiley & Sons, c1996.
29. Kirchmayer, L.K., et al., Direct Calculation of Transmission Loss Formula-I. Power Apparatus and Systems, Part III. Transactions of the American Institute of Electrical Engineers, 1960. 79(3): p. 962-967.
30. Abido, M.A., Optimal power flow using particle swarm optimization. International Journal of Electrical Power & Energy Systems, 2002. 24(7): p. 563-571.
31. Yasar, C. and S. Ozyon, A new hybrid approach for nonconvex economic dispatch problem with valve-point effect. Energy, 2011. 36(10): p. 5838-5845.
32. University of Washington, E.E. Power Systems Test Case Archive. Available from: http://www.ee.washington.edu/research/pstca/.
33. Cervantes, A., I. Galván, and P. Isasi, Michigan Particle Swarm Optimization for Prototype Reduction in Classification Problems. New Generation Computing, 2009. 27(3): p. 239-257.
34. Ongsakul, W. and T. Tantimaporn, Optimal power flow by improved evolutionary programming. Electric Power Components and Systems, 2006. 34(1): p. 79-95.
35. Yuryevich, J. and K.P. Wong, Evolutionary programming based optimal power flow algorithm. Ieee Transactions on Power Systems, 1999. 14(4): p. 1245-1250.
36. Y., L. and D. Ben Attous, A Hybrid GA–PS Method To Solve The Economic Load Dispatch Problem. Journal of Theoretical and Applied Information Technology 2010. 15(1).
37. Swarup, K.S., Ant colony optimization for economic generator scheduling and load dispatch, in Proceedings of the 6th WSEAS international conference on Evolutionary computing2005, World Scientific and Engineering Academy and Society (WSEAS): Lisbon, Portugal. p. 167-175.
38. Gasbaoui, B., et al., Optimal Placement and Sizing of Capacitor Banks Using Fuzzy-Ant Approach in Electrical Distribution Systems. Leonardo Electronic Journal of Practices and Technologies (LEJPT), 2010. 9(16): p. 9.