研究生: |
廖益弘 Yi-Hung Liao |
---|---|
論文名稱: |
並聯三相升壓型整流器環流之建模與控制 MODELING AND CONTROL OF CIRCULATING CURRENTS OF PARALLEL THREE-PHASE BOOST RECTIFIERS |
指導教授: |
潘晴財
Ching-Tsai Pan |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 140 |
中文關鍵詞: | 環流 、並聯系統 、協調控制 、三相升壓型整流器 |
外文關鍵詞: | circulating current, parallel system, coordinate control, three-phase boost rectifiers |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
轉換器並聯可增加系統額定功率、提高系統可靠度並提升效率,而且可降低成本和減少輸出入電壓或電流漣波。此外,並聯架構非常適合系統模組化設計與規劃,亦可提供較佳的彈性,但是當轉換器直接並聯在一起運作時,不同轉換器開關的操作會形成轉換器之間環流的迴路,此一現象將會造成線路電流波形失真、負載電流分配不均,以及系統整體效能的降低。到目前為止,只有極少數的文獻提到並聯系統零序環流的建模,有關環流的完整建模和較佳的控制方式仍有待進一步的研究。因此,本論文經由系統化的模擬研析與觀察了解相同容量轉換器並聯時的環流產生現象,在國際首先定義出各個轉換器各相之環流,藉此一定義可完整說明環流的物理意義,並清楚的說明並聯三相轉換器環流產生的機制。基於此ㄧ環流定義,本論文亦首度導出正確而完整的三相環流模型,經PSPICE模擬軟體的驗證,此一環流模型與定義之環流幾乎完全吻合,同時從此一狀態平均模型可以看出,環流不僅有零序成分,而且存在非零序成分。從此環流模型可顯而易見的了解環流受到哪些因素的影響,諸如不同的脈波寬度調變切換策略。值得ㄧ提的是,本論文首次提出並聯轉換器本質環流的現象。基於本論文所提之環流模型,吾人更進一步尋找一適當的環流協調控制策略,此策略可消除並聯系統之環流而獲得均流效果。此外,有鑒於逐漸增加的並聯分散式電源系統,作者首先提出環流指標和不平衡率作為量化量測第j台轉換器第k相電源品質的依據,同時更進一步提出廣義的環流定義和廣義並聯三相轉換器環流狀態空間平均模型,適用於並聯轉換器在不同負載電流之操作情形。同時,本論文亦提出一廣義環流協調控制策略,依據額定容量或較佳效率之分佈因素考量可作不同負載之調度,以達成並聯轉換器間環流消除與所需負載電流之分配。最後,本論文作者並實體製作一套並聯三相升壓型整流器之硬體系統,使用數位訊號處理器TMS320F2812 DSP作為控制器,以驗證本論文所提廣義環流協調控制策略,模擬與實作波形同時顯示本論文所提之廣義環流協調控制策略確實可行。
It is well-known that multiphase converters can be paralleled to increase the power rating, reliability, efficiency as well as decrease the cost and current/voltage ripples . In addition, the parallel structure is very suitable for modular system design and system reconfiguration, providing better flexibility. However, when converters are paralleled together, circulating currents will be generated automatically whenever closed loops between different converters are formed by the switching operations. This will result in current distortion, unbalanced load sharing and the overall performance will be degraded. However, up to the present, very few existing papers concerning with circulating current modeling of paralleled systems are available. Further research work about more complete modeling and better control of circulating currents remains to be done. Hence, in this dissertation, definition of circulating currents of multi-phase paralleled converters is first presented and the circulating current generating mechanism is clearly explained. Then, based on this definition an averaged model of the circulating current is proposed. It is seen from this model that the circulating current consists of not only the zero sequence but also the non-zero sequence components. The governing differential equation also shows explicitly the relation between the circulating currents and the affecting factors such as different PWM strategies. With this understanding, a simple coordinate control is then presented to achieve equal load sharing control and reduce the circulating current. The phenomenon of the intrinsic circulating current is also explained.
In addition, in view of the gradually increased parallel systems in distribution power generation systems, the author also proposed a circulating current index and unbalance rate for the kth phase of converter j as a quantitative measure about the serious status of power quality. Furthermore, the proposed circulating current definition and model are also generalized to cover the case of paralleled converters with different loadings. Meanwhile, a generalized coordinate control is also proposed to achieve unequal load sharing control as well as to eliminate the circulating currents according to the desired distribution factors. A prototype system is also constructed and the proposed general coordinate control is implemented by using TMS320F2812 DSP to verify the validity. Both simulation and experimental results indeed show the effectiveness of the proposed general coordinate control.
REFERENCES
[1] M. Basu, S.P. Das and G.K. Dubey, “Parallel converter scheme for high-power active power filters,” IEE Proc.-Electr. Power Appl., Vol. 151, No. 4, pp. 460-466, July 2004.
[2] Z. Ye, D. Boroyevich, and F. C. Lee, “Paralleling non-isolated multi-phase PWM converters,” IEEE Industry Applications Conference Record, Vol. 4, pp. 2433–2439, Oct. 2000.
[3] B.-H. Kwon; J.-H. Choi; and T.-W. Kim, “Improved single-phase line-interactive UPS,” IEEE Transaction on Industrial Electronics, Vol. 48, No. 4, pp. 804-811, Aug. 2001.
[4] M. Cichowlas, M. Malinowski, M. P. Kazmierkowski, D. L. Sobczuk, P. Rodriguez, J. Pou, “Active Filtering Function of Three-Phase PWM Boost Rectifier under Different Line Voltage Conditions,” IEEE Transaction on Industrial Electronics, Vol. 52, No. 2, pp. 410-419, Apr. 2005.
[5] F. Blaabjerg, R. Teodorescu, M. Liserre, A. V. Timbus, “Overview of Control and Grid Synchronization for Distributed Power Generation Systems,” IEEE Transaction on Industrial Electronics, Vol. 53, No. 5, pp. 1398-1409, Oct. 2006.
[6] J. M. Guerrero, J. Matas, L. Garcia De Vicunagarcia De Vicuna, M. Castilla, J. Miret, “Wireless-Control Strategy for Parallel Operation of Distributed-Generation Inverters,” IEEE Transaction on Industrial Electronics, Vol. 53, No. 5, pp. 1461-1470, Oct. 2006.
[7] C. T. Pan and Y. H. Liao, “Modeling and Coordinate Control of Circulating Currents in Parallel Three-Phase Boost Rectifiers,” IEEE Transaction on Industrial Electronics, Vol. 54, No. 2, pp. 825-838, Apr 2007.
[8] F. Merienne, J. Koudet, JL. Schanen., “Switching Disturbance due to Source Inductance for a Power MOSFET Analysis and Solutions" 27th Annual IEEE Power Electronics Specialists Conference (PESC '96), vol.11, pp. 1743-1747, 1996.
[9] N. Seki and H. Uchino, “Which is better at a high power reactive power compensation system, high PWM frequency or multiple connection,” in Proc. IEEE Ind. Applicat. Soc. Annu. Meeting, vol. 2, pp. 946–953, 1994.
[10] Z. P. Fang; J.-S. Lai; J.W. McKeever, J. VanCoevering “A multilevel voltage-source inverter with separate DC sources for static VAr generation”, IEEE Transactions on Industry Applications, Vol. 32, pp.1130-1138, Sep/Oct 1996.
[11] Z. P. Fang; J.-S. Lai; “Dynamic performance and control of a static VAr generator using cascade multilevel inverters”, IEEE Transactions on Industry Applications ,Vol. 33 , pp. 748-755, May/Jun 1997.
[12] Z. P. Fang, J.W. McKeever, Adams, D. J. ,”A power line conditioner using cascade multilevel inverters for distribution systems”, IEEE Transactions on Industry Applications ,Vol. 34 , pp. 1293-1298, Nov/Dec 1998.
[13] C.K. Lee, J. S. K. Leung; S.Y. R. Hui, H.S.-H. Chung, “Circuit-level comparison of STATCOM technologies”, IEEE Transactions on Power Electronics. Vol: 18, pp. 1084- 1092, July 2003.
[14] J. W. Dixon and B. T. Ooi, “Series and parallel operation of hysteresis current-controlled PWM rectifiers,” IEEE Trans. Ind. Applicat., vol. 25, no. 4, pp. 644–651, 1989.
[15] L. H. Walker, “10 MW GTO converter for battery peaking service,” IEEE Trans. Ind. Applicat., vol. 26, no. 1, pp. 63–67, 1990.
[16] B. Gutsmann, P. Mourick, D. Silber, “Exact inductive parasitic extraction for analysis of IGBT parallel switching including DCB-backside eddy currents,” in Proc. PESC 2000 Conf., vol. 3, pp1291-1295, June 2000.
[17] C. Fontaine, “On the paralleling of UPS systems,” in Proc. IEEE-INTELEC, pp. 651-658, 1986.
[18] K. Xing, F. C. Lee, D. Boroyevich, Z. Ye, and S. K. Mazumder, “Interleaved PWM with Discontinuous Space-Vector Modulation,” IEEE Transactions on Power Electronics, Vol. 14, No. 5, pp. 906–917, Sept. 1999.
[19] Z. Ye, D. Boroyevich, J. Y. Choi, and F. C. Lee, “Control of Circulating Current in Two Parallel Three-Phase Boost Rectifiers,” IEEE Transactions on Power Electronics, Vol. 17, No. 5, pp. 609–615, Sept. 2002.
[20] S. K. Mazumder, “A Novel Discrete Control Strategy for Independent Stabilization of Parallel Three-Phase Boost Converters by Combining Space-Vector Modulation With Variable-Structure Control,” IEEE Transactions on Power Electronics, Vol. 18, No. 4, pp. 1070–1083, Jul. 2003.
[21] S. K. Mazumder, “Continuous and Discrete Variable-Structure Controls for Parallel Three-Phase Boost Rectifier,” IEEE Transactions on Industrial Electronics, vol. 52, No. 2, pp. 340–354, Apr. 2005.
[22] J. W. Dixon and B. T. Ooi, “Series and parallel operation of hysteresis current-controlled PWM rectifiers,” IEEE Trans. Ind. Applicat., vol. 25, no. 4, pp. 644–651, 1989.
[23] Y. Komatsuzaki, “Cross current control for parallel operating three-phase inverter,” in Proc. 25th Annu. IEEE Power Electron. Spec. Conf., pp. 943–950, 1994.
[24] K. Matsui, “A pulse width modulated inverter with parallel-connected transistors by using sharing reactors,” in Proc. IEEE Ind. Applicat. Soc. Annu. Meeting, Toronto, ON, Canada, pp. 1015–1019, 1985.
[25] Y. Sato and T. Kataoka, “Simplified control strategy to improve ac-inputcurrent waveform of parallel-connected current-type PWM rectifiers,” Proc. Inst. Elect. Eng., vol. 142, pp. 246–254, July 1995.
[26] J. A. A. Qahouq, L. Huang, D. Huard, and A. Hallberg, “Novel Current Sharing Schemes for Multiphase Converters with Digital Controller Implementation,” Twenty Second Annual Applied Power Electronics Conference APEC 2007 Conference Proceedings, pp.148 – 156, Feb. 2007.
[27] M. P. Kazmierkowski and L. Malesani, “Current Control Techniques for Three-Phase Voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, No. 5, pp. 691-703, Oct. 1998.
[28] M. Malinowski, M. P. Kazmierkowski, A. M. Trzynadlowski, ” A comparative study of control techniques for PWM rectifiers in AC adjustable speed drives”, in Proc. IECON’01, pp. 1114-1118, 2001.
[29] M. Malinowski, M. P. Kazmierkowski, and A. M. Trzynadlowski, “A Comparative Study of Control Techniques for PWM Rectifiers in AC Adjustable Speed Drives,” IEEE Trans. Ind. Electron., vol. 8, no. 6, pp. 1390–1396, Nov. 2003.
[30] S. Hansen, M Malinowski, F. Blaabjerg, and M. P. Kazmierkowski, “Sensorless control strategies for PWM rectifier,” in Proc. APEC’00, pp. 832-838, 2000.
[31] T. Noguchi, H. Tomiki, S. Kondo, and I. Takahashi, “Direct power control of PWM converter without power-source voltage sensors,” IEEE Trans. Ind. Applicat., vol. 34, pp. 473–479, May/June 1998.
[32] I. Takahashi and Y. Ohmori, ”High performance direct torque control of an induction motor,” IEEE Trans. Ind. Appl., vol. 25, no. 2, pp. 257-264, April 1989.
[33] P. J. M. Smidt and J. L. Duarte, ”A unity power factor converter without current measurements,” in Proc. EPE’95, vol. 3, pp. 275-280, 1995.
[34] J. L. Duarte, A. van Zwam, C. Wijnands, and A. Vandenput, “Reference frames fit for controlling PWM rectifiers,” IEEE Trans. Ind. Electron., vol. 46, no. 3, pp. 628-630, 1999.
[35] M. Malinowski, M. P. Kazmierkowski, S. Hansen, F. Blaabjerg, and G. Marques, “Virtual flux based direct power control of three-phase PWM rectifiers,” IEEE Trans. Ind. Electron., vol. 37, no. 4, pp. 1019-1027, 2001.
[36] B. H. Kwon, J. H. Youm, and J. W. Lim, “A Line-Voltage-Sensorless Synchronous Rectifier,” IEEE Trans. Power Electron., vol. 14, no. 5, pp. 966–972, Sept. 1999.
[37] S. Bhattacharya, A. Veltman, D. M. Divan, and R. D. Lorenz, “Flux-Based Active Filter Controller,” IEEE Trans. Ind. Applicat., vol. 32, pp. 491–502, May/June 1996.
[38] M. Malinowski, M. P. Kazmierkowski, S. Hansen, F. Blaabjerg, and G. Marques, “Virtual flux based direct power control of three-phase PWM rectifiers,” IEEE Trans. Ind. Applicat., vol. 37, pp. 1019–1027, July/Aug. 2001.
[39] P. Barrass and M. Cade, “PWM rectifier using indirect voltage sensing,” IEE Proc.-Electr. Power Appl., vol. 146, no. 5, pp. 539–544, Sep. 1999.
[40] M. P. Kazmierkowski, R. Krishnan, and F. Blaabjerg, Control in Power Electronics. London, U.K.: Academic, 2002.
[41] M. Cichowlas, M. Malinowski, M. P. Kazmierkowski, D. L. Sobczuk, P. Rodriguez, J. Pou, “Active Filtering Function of Three-Phase PWM Boost Rectifier under Different Line Voltage Conditions,” IEEE Transaction on Industrial Electronics, vol. 52, no. 2, pp. 410-419, Apr. 2005.
[42] P. Pillay and M. Manyage, “Definitions of Voltage Unbalance,” IEEE Power Engineering Review, vol. 5, pp. 50–51, May 2001.
[43] M. H. J. Bollen, “Definitions of Voltage Unbalance,” IEEE Power Engineering Review, vol. 5, pp. 49–50, Nov 2002.
[44] H. S. Song and K. Nam, “Dual Current Control Scheme for PWM Converter Under Unbalanced Input Voltage Conditions,” IEEE Transaction on Industrial Electronics, vol. 46, No. 5, pp. 953-959, Oct. 1999.
[45] Y. Sato and T. Kataoka, “Simplified Control Strategy to Improve Ac-Input-Current Waveform of Parallel-Connected Current-Type PWM Rectifiers,” IEE Proc.-Electr. Power Appl., vol. 142, no. 4, pp. 246–254, July 1995.
[46] K. Matsui, Y. Murai, M. Watanabe, M. Kaneko, and F. Ueda, “A Pulsewidth- Modulated Inverter with Parallel-Connected Transistors Using Current-Sharing Reactors,” IEEE Transaction on Power Electronics, vol. 8, no. 2, pp. 186–191, April. 1993.
[47] J. A. A. Qahouq, L. Huang, D. Huard, and A. Hallberg, “Novel Current Sharing Schemes for Multiphase Converters with Digital Controller Implementation,” Twenty Second Annual Applied Power Electronics Conference APEC 2007 Conference Proceedings, pp.148 – 156, Feb. 2007.
[48] Jaber Abu-Qahouq, Hong Mao, Hussam J. Al-Atrash, and Issa Batarseh, "Maximum Efficiency Point Tracking (MEPT) Method and Dead Time Control," IEEE Transactions on Power Electronics, vol. 21, no. 5, Pages: 1273-1281, September 2006.
[49] H. Forghani-Zadeh and G. Rincon-Mora, "Current Sensing Techniques for DC-DC Converters," Proceedings of the 45th IEEE Midwest Symp. On Circuits and Systems, Pages: 577-580, 2002.
[50] Y. Panov and Jovanovic, "Stability and dynamic performance of current sharing control for paralleled voltage regulator modules," IEEE Transactions on Power Electronics, vol. 17, Issue 2, pages: 172-179, March 2002.
[51] Jaber A. Abu Qahouq, Hong Mao, and Issa Batarseh, "Multiphase Voltage-Mode Hysteretic Controlled Dc-Dc Converter with Novel Current Sharing," IEEE Transactions on Power Electronics, vol. 19, no. 6, pages: 1397-1407, November 2004.
[52] Jaber Abu-Qahouq, Hong Mao, Hussam J. Al-Atrash, and Issa Batarseh, "Maximum Efficiency Point Tracking (MEPT) Method and Dead Time Control," IEEE Transactions on Power Electronics, vol. 21, no. 5, Pages: 1273-1281, September 2006.
[53] J. Holz, “Pulsewidth modulation—a survey,” IEEE Trans Ind. Electron., vol. 39, pp. 410–420, Oct. 1992.
[54] A. Hava, R. J. Kerkman, and T. A. Lipo, “Simple analytical and graphical methods for carrier based PWM VSI drives,” IEEE Trans. Power Electron., vol. 14, pp. 49–61, Jan. 1999.
[55] O. Ojo, “The generalized discontinuous PWM scheme for three-phase voltage source inverters”, IEEE Transactions on Industrial Electronics, Vol. 51, pp. 1280- 1289, Dec. 2004.
[56] X. Sun, Y. S. Lee, D. Xu, “Modeling, analysis, and implementation of parallel multi-inverter systems with instantaneous average-current-sharing scheme,” IEEE Trans. Power Electron., Vol. 18, No. 3, pp. 844-856, May 2003.
[57] J. F. Chen and C. L. Chu, “Combination voltage-controlled and current-controlled PWM inverters for UPS parallel operation,” IEEE Trans. Power Electron., vol. 10, pp. 547–558, Sept. 1995.
[58] C. S. Lee et al., “Parallel U.P.S. with an instantaneous current sharing control,” in Proc. IEEE-IECON, vol. 1, pp. 568–573, 1998.
[59] H. Broeck and U. Boeke, “A simple method for parallel operation of inverters,” in Proc. IEEE-INTELEC, pp. 143–150, 1998.
[60] Y. Ito and O. Iyama, “Parallel redundant operation of UPS with robust current minor loop,” in Proc. Power Conv. Conf., Nagaoka, Japan, pp. 489–494, 1997.
[61] A. P. Martins, A. S. Carvalho, and A. S. Araújo, “Design and implementation of a current controller for the parallel operation of standard UPSs,” in Proc. IEEE IECON, pp. 584–589, 1995.
[62] R. Xiong, W. Hao, and J. Chen, “A study of parallel operation control technique of DC/AC SPWM inverter,” in Proc. IEEE 1999 Int. Conf. Power Electron. Drive Syst., PEDS, pp. 1027–1032, 1999.
[63] Y.-K. Chen, T.-F. Wu, Y.-E. Wu, and C.-P. Ku, “A current sharing control strategy for paralleled multi-inverter systems using microprocessor based robust control,” in Proc. IEEE Region 10 Int. Conf. Elect. Electron. Technol., TENCON, pp. 647–653, 2001.
[64] Y. Xing, L. Huang, S. Sun, and Y. Yan, “Novel control for redundant parallel UPS’s with instantaneous current sharing,” in Proc. Power Conv. Conf., Osaka, Japan, pp. 959–963, 2002.
[65] T.-F. Wu, Y.-K. Chen, and Y.-H. Huang, “3C strategy for inverters in parallel operation achieving an equal current distribution,” IEEE Trans. Ind. Electron., vol. 47, pp. 273–281, Apr. 2000.
[66] Y. C.; Cheng, D. K.-W.; Y. S. Lee, ”A Hot-Swap Solution for Paralleled Power Modules by Using Current-Sharing Interface Circuits,” IEEE Transactions on Power Electronics, Vol. 21, Issue 6, pp. 1564 - 1571, Nov. 2006.